Metamath Proof Explorer
Description: The unity element of a ring belongs to the base set of the ring,
deduction version. (Contributed by SN, 16-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ringidcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
ringidcl.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
|
|
ringidcld.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
Assertion |
ringidcld |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringidcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
ringidcl.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
ringidcld.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
1 2
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |