| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringidm.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ringidm.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | ringidm.u | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 5 | 4 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 6 | 4 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 7 | 4 2 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 8 | 4 3 | ringidval | ⊢  1   =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 9 | 6 7 8 | mndlrid | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  𝑋  ∈  𝐵 )  →  ( (  1   ·  𝑋 )  =  𝑋  ∧  ( 𝑋  ·   1  )  =  𝑋 ) ) | 
						
							| 10 | 5 9 | sylan | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( (  1   ·  𝑋 )  =  𝑋  ∧  ( 𝑋  ·   1  )  =  𝑋 ) ) |