Step |
Hyp |
Ref |
Expression |
1 |
|
ringidss.g |
⊢ 𝑀 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) |
2 |
|
ringidss.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
ringidss.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
7 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 1 ∈ 𝐴 ) |
8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
9 |
8 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
10 |
1 9
|
ressbas2 |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( Base ‘ 𝑀 ) ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 𝐴 = ( Base ‘ 𝑀 ) ) |
12 |
7 11
|
eleqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 1 ∈ ( Base ‘ 𝑀 ) ) |
13 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
14 |
11 13
|
eqsstrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → ( Base ‘ 𝑀 ) ⊆ 𝐵 ) |
15 |
14
|
sselda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → 𝑦 ∈ 𝐵 ) |
16 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
17 |
11 16
|
eqeltrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 𝐴 ∈ V ) |
18 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
19 |
8 18
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
20 |
1 19
|
ressplusg |
⊢ ( 𝐴 ∈ V → ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) ) |
21 |
17 20
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) ) |
23 |
22
|
oveqd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1 ( +g ‘ 𝑀 ) 𝑦 ) ) |
24 |
2 18 3
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
25 |
24
|
3ad2antl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
26 |
23 25
|
eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 1 ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
27 |
15 26
|
syldan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 1 ( +g ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
28 |
22
|
oveqd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( .r ‘ 𝑅 ) 1 ) = ( 𝑦 ( +g ‘ 𝑀 ) 1 ) ) |
29 |
2 18 3
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( .r ‘ 𝑅 ) 1 ) = 𝑦 ) |
30 |
29
|
3ad2antl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( .r ‘ 𝑅 ) 1 ) = 𝑦 ) |
31 |
28 30
|
eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑀 ) 1 ) = 𝑦 ) |
32 |
15 31
|
syldan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 1 ) = 𝑦 ) |
33 |
4 5 6 12 27 32
|
ismgmid2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) → 1 = ( 0g ‘ 𝑀 ) ) |