Step |
Hyp |
Ref |
Expression |
1 |
|
ringidval.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
2 |
|
ringidval.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
df-ur |
⊢ 1r = ( 0g ∘ mulGrp ) |
4 |
3
|
fveq1i |
⊢ ( 1r ‘ 𝑅 ) = ( ( 0g ∘ mulGrp ) ‘ 𝑅 ) |
5 |
|
fnmgp |
⊢ mulGrp Fn V |
6 |
|
fvco2 |
⊢ ( ( mulGrp Fn V ∧ 𝑅 ∈ V ) → ( ( 0g ∘ mulGrp ) ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
7 |
5 6
|
mpan |
⊢ ( 𝑅 ∈ V → ( ( 0g ∘ mulGrp ) ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
8 |
4 7
|
eqtrid |
⊢ ( 𝑅 ∈ V → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
9 |
|
0g0 |
⊢ ∅ = ( 0g ‘ ∅ ) |
10 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( 1r ‘ 𝑅 ) = ∅ ) |
11 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ∅ ) |
12 |
11
|
fveq2d |
⊢ ( ¬ 𝑅 ∈ V → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ∅ ) ) |
13 |
9 10 12
|
3eqtr4a |
⊢ ( ¬ 𝑅 ∈ V → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
14 |
8 13
|
pm2.61i |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
15 |
1
|
fveq2i |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
16 |
14 2 15
|
3eqtr4i |
⊢ 1 = ( 0g ‘ 𝐺 ) |