Metamath Proof Explorer


Theorem ringinvcl

Description: The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitinvcl.1 𝑈 = ( Unit ‘ 𝑅 )
unitinvcl.2 𝐼 = ( invr𝑅 )
ringinvcl.3 𝐵 = ( Base ‘ 𝑅 )
Assertion ringinvcl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝐼𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 unitinvcl.1 𝑈 = ( Unit ‘ 𝑅 )
2 unitinvcl.2 𝐼 = ( invr𝑅 )
3 ringinvcl.3 𝐵 = ( Base ‘ 𝑅 )
4 1 2 unitinvcl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝐼𝑋 ) ∈ 𝑈 )
5 3 1 unitcl ( ( 𝐼𝑋 ) ∈ 𝑈 → ( 𝐼𝑋 ) ∈ 𝐵 )
6 4 5 syl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝐼𝑋 ) ∈ 𝐵 )