Description: The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitinvcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitinvcl.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| ringinvcl.3 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitinvcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitinvcl.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 3 | ringinvcl.3 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | 1 2 | unitinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑈 ) |
| 5 | 3 1 | unitcl | ⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝑈 → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 6 | 4 5 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |