Metamath Proof Explorer
Description: If a ring unit element X admits both a left inverse Y and a
right inverse Z , they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
isdrng4.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
isdrng4.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
|
isdrng4.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
|
|
isdrng4.x |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
isdrng4.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
|
|
isdrng4.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
ringinveu.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
ringinveu.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
ringinveu.3 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
|
ringinveu.4 |
⊢ ( 𝜑 → ( 𝑌 · 𝑋 ) = 1 ) |
|
|
ringinveu.5 |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) = 1 ) |
|
Assertion |
ringinveu |
⊢ ( 𝜑 → 𝑍 = 𝑌 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
isdrng4.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isdrng4.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
isdrng4.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
isdrng4.x |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
isdrng4.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
6 |
|
isdrng4.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
ringinveu.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
ringinveu.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
ringinveu.3 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
10 |
|
ringinveu.4 |
⊢ ( 𝜑 → ( 𝑌 · 𝑋 ) = 1 ) |
11 |
|
ringinveu.5 |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) = 1 ) |
12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( 𝑌 · ( 𝑋 · 𝑍 ) ) = ( 𝑌 · 1 ) ) |
13 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑌 · 𝑋 ) · 𝑍 ) = ( 1 · 𝑍 ) ) |
14 |
1 4 6 8 7 9
|
ringassd |
⊢ ( 𝜑 → ( ( 𝑌 · 𝑋 ) · 𝑍 ) = ( 𝑌 · ( 𝑋 · 𝑍 ) ) ) |
15 |
1 4 3 6 9
|
ringlidmd |
⊢ ( 𝜑 → ( 1 · 𝑍 ) = 𝑍 ) |
16 |
13 14 15
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑌 · ( 𝑋 · 𝑍 ) ) = 𝑍 ) |
17 |
1 4 3 6 8
|
ringridmd |
⊢ ( 𝜑 → ( 𝑌 · 1 ) = 𝑌 ) |
18 |
12 16 17
|
3eqtr3d |
⊢ ( 𝜑 → 𝑍 = 𝑌 ) |