Step |
Hyp |
Ref |
Expression |
1 |
|
ringinvnzdiv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringinvnzdiv.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
ringinvnzdiv.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
ringinvnzdiv.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
ringinvnzdiv.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
ringinvnzdiv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
ringinvnzdiv.a |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐵 ( 𝑎 · 𝑋 ) = 1 ) |
8 |
|
oveq2 |
⊢ ( 𝑋 = 0 → ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) ) |
9 |
1 2 4
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
10 |
5 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
11 |
|
eqeq12 |
⊢ ( ( ( 𝑎 · 𝑋 ) = 1 ∧ ( 𝑎 · 0 ) = 0 ) → ( ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) ↔ 1 = 0 ) ) |
12 |
11
|
biimpd |
⊢ ( ( ( 𝑎 · 𝑋 ) = 1 ∧ ( 𝑎 · 0 ) = 0 ) → ( ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) → 1 = 0 ) ) |
13 |
12
|
ex |
⊢ ( ( 𝑎 · 𝑋 ) = 1 → ( ( 𝑎 · 0 ) = 0 → ( ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) → 1 = 0 ) ) ) |
14 |
10 13
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( ( 𝑎 · 𝑋 ) = ( 𝑎 · 0 ) → 1 = 0 ) ) |
15 |
8 14
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 𝑋 = 0 → 1 = 0 ) ) |
16 |
|
oveq2 |
⊢ ( 1 = 0 → ( 𝑋 · 1 ) = ( 𝑋 · 0 ) ) |
17 |
1 2 3
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 1 ) = 𝑋 ) |
18 |
1 2 4
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
19 |
17 18
|
eqeq12d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 · 1 ) = ( 𝑋 · 0 ) ↔ 𝑋 = 0 ) ) |
20 |
19
|
biimpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 · 1 ) = ( 𝑋 · 0 ) → 𝑋 = 0 ) ) |
21 |
5 6 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 · 1 ) = ( 𝑋 · 0 ) → 𝑋 = 0 ) ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( ( 𝑋 · 1 ) = ( 𝑋 · 0 ) → 𝑋 = 0 ) ) |
23 |
16 22
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 1 = 0 → 𝑋 = 0 ) ) |
24 |
15 23
|
impbid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 𝑋 = 0 ↔ 1 = 0 ) ) |
25 |
24 7
|
r19.29a |
⊢ ( 𝜑 → ( 𝑋 = 0 ↔ 1 = 0 ) ) |
26 |
25
|
necon3bid |
⊢ ( 𝜑 → ( 𝑋 ≠ 0 ↔ 1 ≠ 0 ) ) |