Step |
Hyp |
Ref |
Expression |
1 |
|
ringinvnzdiv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringinvnzdiv.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
ringinvnzdiv.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
ringinvnzdiv.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
ringinvnzdiv.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
ringinvnzdiv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
ringinvnzdiv.a |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐵 ( 𝑎 · 𝑋 ) = 1 ) |
8 |
|
ringinvnzdiv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
1 2 3
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 1 · 𝑌 ) = 𝑌 ) |
10 |
5 8 9
|
syl2anc |
⊢ ( 𝜑 → ( 1 · 𝑌 ) = 𝑌 ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝑌 = ( 1 · 𝑌 ) ) |
12 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) ∧ ( 𝑋 · 𝑌 ) = 0 ) → 𝑌 = ( 1 · 𝑌 ) ) |
13 |
|
oveq1 |
⊢ ( 1 = ( 𝑎 · 𝑋 ) → ( 1 · 𝑌 ) = ( ( 𝑎 · 𝑋 ) · 𝑌 ) ) |
14 |
13
|
eqcoms |
⊢ ( ( 𝑎 · 𝑋 ) = 1 → ( 1 · 𝑌 ) = ( ( 𝑎 · 𝑋 ) · 𝑌 ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 1 · 𝑌 ) = ( ( 𝑎 · 𝑋 ) · 𝑌 ) ) |
16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
19 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
20 |
17 18 19
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
21 |
16 20
|
jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) |
23 |
1 2
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑎 · 𝑋 ) · 𝑌 ) = ( 𝑎 · ( 𝑋 · 𝑌 ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( ( 𝑎 · 𝑋 ) · 𝑌 ) = ( 𝑎 · ( 𝑋 · 𝑌 ) ) ) |
25 |
15 24
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 1 · 𝑌 ) = ( 𝑎 · ( 𝑋 · 𝑌 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( 1 · 𝑌 ) = ( 𝑎 · ( 𝑋 · 𝑌 ) ) ) |
27 |
|
oveq2 |
⊢ ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑎 · ( 𝑋 · 𝑌 ) ) = ( 𝑎 · 0 ) ) |
28 |
1 2 4
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
29 |
5 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) → ( 𝑎 · 0 ) = 0 ) |
31 |
27 30
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( 𝑎 · ( 𝑋 · 𝑌 ) ) = 0 ) |
32 |
12 26 31
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑎 · 𝑋 ) = 1 ) ∧ ( 𝑋 · 𝑌 ) = 0 ) → 𝑌 = 0 ) |
33 |
32
|
exp31 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 · 𝑋 ) = 1 → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) ) |
34 |
33
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐵 ( 𝑎 · 𝑋 ) = 1 → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) ) |
35 |
7 34
|
mpd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) |
36 |
|
oveq2 |
⊢ ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) ) |
37 |
1 2 4
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
38 |
5 6 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 · 0 ) = 0 ) |
39 |
36 38
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑋 · 𝑌 ) = 0 ) |
40 |
39
|
ex |
⊢ ( 𝜑 → ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
41 |
35 40
|
impbid |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |