Database BASIC ALGEBRAIC STRUCTURES Rings Unital rings ringm2neg  
				
		 
		
			
		 
		Description:   Double negation of a product in a ring.  ( mul2neg  analog.)
       (Contributed by Mario Carneiro , 4-Dec-2014)   (Proof shortened by AV , 30-Mar-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ringneglmul.b ⊢  𝐵   =  ( Base ‘ 𝑅  )  
					
						ringneglmul.t ⊢   ·    =  ( .r  ‘ 𝑅  )  
					
						ringneglmul.n ⊢  𝑁   =  ( invg  ‘ 𝑅  )  
					
						ringneglmul.r ⊢  ( 𝜑   →  𝑅   ∈  Ring )  
					
						ringneglmul.x ⊢  ( 𝜑   →  𝑋   ∈  𝐵  )  
					
						ringneglmul.y ⊢  ( 𝜑   →  𝑌   ∈  𝐵  )  
				
					Assertion 
					ringm2neg ⊢   ( 𝜑   →  ( ( 𝑁  ‘ 𝑋  )  ·   ( 𝑁  ‘ 𝑌  ) )  =  ( 𝑋   ·   𝑌  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ringneglmul.b ⊢  𝐵   =  ( Base ‘ 𝑅  )  
						
							2 
								
							 
							ringneglmul.t ⊢   ·    =  ( .r  ‘ 𝑅  )  
						
							3 
								
							 
							ringneglmul.n ⊢  𝑁   =  ( invg  ‘ 𝑅  )  
						
							4 
								
							 
							ringneglmul.r ⊢  ( 𝜑   →  𝑅   ∈  Ring )  
						
							5 
								
							 
							ringneglmul.x ⊢  ( 𝜑   →  𝑋   ∈  𝐵  )  
						
							6 
								
							 
							ringneglmul.y ⊢  ( 𝜑   →  𝑌   ∈  𝐵  )  
						
							7 
								
							 
							ringrng ⊢  ( 𝑅   ∈  Ring  →  𝑅   ∈  Rng )  
						
							8 
								4  7 
							 
							syl ⊢  ( 𝜑   →  𝑅   ∈  Rng )  
						
							9 
								1  2  3  8  5  6 
							 
							rngm2neg ⊢  ( 𝜑   →  ( ( 𝑁  ‘ 𝑋  )  ·   ( 𝑁  ‘ 𝑌  ) )  =  ( 𝑋   ·   𝑌  ) )