Metamath Proof Explorer


Theorem ringm2neg

Description: Double negation of a product in a ring. ( mul2neg analog.) (Contributed by Mario Carneiro, 4-Dec-2014) (Proof shortened by AV, 30-Mar-2025)

Ref Expression
Hypotheses ringneglmul.b 𝐵 = ( Base ‘ 𝑅 )
ringneglmul.t · = ( .r𝑅 )
ringneglmul.n 𝑁 = ( invg𝑅 )
ringneglmul.r ( 𝜑𝑅 ∈ Ring )
ringneglmul.x ( 𝜑𝑋𝐵 )
ringneglmul.y ( 𝜑𝑌𝐵 )
Assertion ringm2neg ( 𝜑 → ( ( 𝑁𝑋 ) · ( 𝑁𝑌 ) ) = ( 𝑋 · 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ringneglmul.b 𝐵 = ( Base ‘ 𝑅 )
2 ringneglmul.t · = ( .r𝑅 )
3 ringneglmul.n 𝑁 = ( invg𝑅 )
4 ringneglmul.r ( 𝜑𝑅 ∈ Ring )
5 ringneglmul.x ( 𝜑𝑋𝐵 )
6 ringneglmul.y ( 𝜑𝑌𝐵 )
7 ringrng ( 𝑅 ∈ Ring → 𝑅 ∈ Rng )
8 4 7 syl ( 𝜑𝑅 ∈ Rng )
9 1 2 3 8 5 6 rngm2neg ( 𝜑 → ( ( 𝑁𝑋 ) · ( 𝑁𝑌 ) ) = ( 𝑋 · 𝑌 ) )