Database
BASIC ALGEBRAIC STRUCTURES
Rings
Unital rings
ringm2neg
Metamath Proof Explorer
Description: Double negation of a product in a ring. ( mul2neg analog.)
(Contributed by Mario Carneiro , 4-Dec-2014) (Proof shortened by AV , 30-Mar-2025)
Ref
Expression
Hypotheses
ringneglmul.b
⊢ 𝐵 = ( Base ‘ 𝑅 )
ringneglmul.t
⊢ · = ( .r ‘ 𝑅 )
ringneglmul.n
⊢ 𝑁 = ( invg ‘ 𝑅 )
ringneglmul.r
⊢ ( 𝜑 → 𝑅 ∈ Ring )
ringneglmul.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
ringneglmul.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
Assertion
ringm2neg
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 · 𝑌 ) )
Proof
Step
Hyp
Ref
Expression
1
ringneglmul.b
⊢ 𝐵 = ( Base ‘ 𝑅 )
2
ringneglmul.t
⊢ · = ( .r ‘ 𝑅 )
3
ringneglmul.n
⊢ 𝑁 = ( invg ‘ 𝑅 )
4
ringneglmul.r
⊢ ( 𝜑 → 𝑅 ∈ Ring )
5
ringneglmul.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
6
ringneglmul.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
7
ringrng
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng )
8
4 7
syl
⊢ ( 𝜑 → 𝑅 ∈ Rng )
9
1 2 3 8 5 6
rngm2neg
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 · 𝑌 ) )