Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ringmgp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
Assertion | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Mnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringmgp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
3 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
5 | 2 1 3 4 | isring | ⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) ) |
6 | 5 | simp2bi | ⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Mnd ) |