Metamath Proof Explorer


Theorem ringmgp

Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypothesis ringmgp.g 𝐺 = ( mulGrp ‘ 𝑅 )
Assertion ringmgp ( 𝑅 ∈ Ring → 𝐺 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 ringmgp.g 𝐺 = ( mulGrp ‘ 𝑅 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 eqid ( +g𝑅 ) = ( +g𝑅 )
4 eqid ( .r𝑅 ) = ( .r𝑅 )
5 2 1 3 4 isring ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) ( 𝑦 ( +g𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( +g𝑅 ) ( 𝑥 ( .r𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r𝑅 ) 𝑧 ) ( +g𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑧 ) ) ) ) )
6 5 simp2bi ( 𝑅 ∈ Ring → 𝐺 ∈ Mnd )