| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringnegl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
ringnegl.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
ringnegl.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 4 |
|
ringnegl.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 5 |
|
ringnegl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
ringnegl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
1 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 9 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 10 |
5 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 11 |
1 4
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ( 𝑁 ‘ 1 ) ∈ 𝐵 ) |
| 12 |
10 8 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 1 ) ∈ 𝐵 ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 14 |
1 13 2
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1 ∈ 𝐵 ∧ ( 𝑁 ‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 1 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 1 ) ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 1 ) · 𝑋 ) ) ) |
| 15 |
5 8 12 6 14
|
syl13anc |
⊢ ( 𝜑 → ( ( 1 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 1 ) ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 1 ) · 𝑋 ) ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 17 |
1 13 16 4
|
grprinv |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ( 1 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 1 ) ) = ( 0g ‘ 𝑅 ) ) |
| 18 |
10 8 17
|
syl2anc |
⊢ ( 𝜑 → ( 1 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 1 ) ) = ( 0g ‘ 𝑅 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 1 ) ) · 𝑋 ) = ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) |
| 20 |
1 2 16
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 21 |
5 6 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 22 |
19 21
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ( +g ‘ 𝑅 ) ( 𝑁 ‘ 1 ) ) · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 23 |
1 2 3
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 24 |
5 6 23
|
syl2anc |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · 𝑋 ) ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 1 ) · 𝑋 ) ) = ( 𝑋 ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 1 ) · 𝑋 ) ) ) |
| 26 |
15 22 25
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 1 ) · 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) |
| 27 |
1 2
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 1 ) · 𝑋 ) ∈ 𝐵 ) |
| 28 |
5 12 6 27
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 1 ) · 𝑋 ) ∈ 𝐵 ) |
| 29 |
1 13 16 4
|
grpinvid1 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( ( 𝑁 ‘ 1 ) · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) = ( ( 𝑁 ‘ 1 ) · 𝑋 ) ↔ ( 𝑋 ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 1 ) · 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 30 |
10 6 28 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( ( 𝑁 ‘ 1 ) · 𝑋 ) ↔ ( 𝑋 ( +g ‘ 𝑅 ) ( ( 𝑁 ‘ 1 ) · 𝑋 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 31 |
26 30
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = ( ( 𝑁 ‘ 1 ) · 𝑋 ) ) |
| 32 |
31
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 1 ) · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |