Step |
Hyp |
Ref |
Expression |
1 |
|
ringo2times.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringo2times.p |
⊢ + = ( +g ‘ 𝑅 ) |
3 |
|
ringo2times.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
ringo2times.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
1 2 3
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
6 |
5
|
ralrimivvva |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
8 |
1 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
10 |
1 3 4
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = 𝑥 ) |
11 |
10
|
ralrimiva |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) |
13 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
14 |
7 9 12 13
|
o2timesd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 + 𝐴 ) = ( ( 1 + 1 ) · 𝐴 ) ) |