| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringprop.b | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐿 ) | 
						
							| 2 |  | ringprop.p | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐿 ) | 
						
							| 3 |  | ringprop.m | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐿 ) | 
						
							| 4 |  | eqidd | ⊢ ( ⊤  →  ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 5 | 1 | a1i | ⊢ ( ⊤  →  ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐿 ) ) | 
						
							| 6 | 2 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ∧  𝑦  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 8 | 3 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) | 
						
							| 9 | 8 | a1i | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ∧  𝑦  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 10 | 4 5 7 9 | ringpropd | ⊢ ( ⊤  →  ( 𝐾  ∈  Ring  ↔  𝐿  ∈  Ring ) ) | 
						
							| 11 | 10 | mptru | ⊢ ( 𝐾  ∈  Ring  ↔  𝐿  ∈  Ring ) |