Metamath Proof Explorer
Description: The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ringz.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
ringz.t |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
ringz.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
|
ringlzd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
ringlzd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
Assertion |
ringrzd |
⊢ ( 𝜑 → ( 𝑋 · 0 ) = 0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ringz.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringz.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
ringz.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
ringlzd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ringlzd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
1 2 3
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
7 |
4 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 · 0 ) = 0 ) |