Metamath Proof Explorer
		
		
		
		Description:  The zero of a unital ring is a right-absorbing element.  (Contributed by SN, 7-Mar-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ringz.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
					
						|  |  | ringz.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
					
						|  |  | ringz.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
					
						|  |  | ringlzd.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
					
						|  |  | ringlzd.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
				
					|  | Assertion | ringrzd | ⊢  ( 𝜑  →  ( 𝑋  ·   0  )  =   0  ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringz.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ringz.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | ringz.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | ringlzd.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | ringlzd.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 | 1 2 3 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ·   0  )  =   0  ) | 
						
							| 7 | 4 5 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ·   0  )  =   0  ) |