Metamath Proof Explorer


Theorem ringrzd

Description: The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025)

Ref Expression
Hypotheses ringz.b 𝐵 = ( Base ‘ 𝑅 )
ringz.t · = ( .r𝑅 )
ringz.z 0 = ( 0g𝑅 )
ringlzd.r ( 𝜑𝑅 ∈ Ring )
ringlzd.x ( 𝜑𝑋𝐵 )
Assertion ringrzd ( 𝜑 → ( 𝑋 · 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 ringz.b 𝐵 = ( Base ‘ 𝑅 )
2 ringz.t · = ( .r𝑅 )
3 ringz.z 0 = ( 0g𝑅 )
4 ringlzd.r ( 𝜑𝑅 ∈ Ring )
5 ringlzd.x ( 𝜑𝑋𝐵 )
6 1 2 3 ringrz ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 𝑋 · 0 ) = 0 )
7 4 5 6 syl2anc ( 𝜑 → ( 𝑋 · 0 ) = 0 )