Step |
Hyp |
Ref |
Expression |
1 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
2 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
3 |
2
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
4 2 5 6
|
isring |
⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) ) |
8 |
7
|
simp3bi |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
10 |
4 6 9
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
11 |
4 6 9
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
12 |
10 11
|
jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
13 |
12
|
ralrimiva |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
14 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ∧ ( ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
15 |
8 13 14
|
sylanbrc |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ∧ ( ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
16 |
4 2 5 6 9
|
issrg |
⊢ ( 𝑅 ∈ SRing ↔ ( 𝑅 ∈ CMnd ∧ ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ∧ ( ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
17 |
1 3 15 16
|
syl3anbrc |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ SRing ) |