Database
BASIC ALGEBRAIC STRUCTURES
Rings
Unital rings
ringsubdi
Metamath Proof Explorer
Description: Ring multiplication distributes over subtraction. ( subdi analog.)
(Contributed by Jeff Madsen , 19-Jun-2010) (Revised by Mario Carneiro , 2-Jul-2014)
Ref
Expression
Hypotheses
ringsubdi.b
⊢ 𝐵 = ( Base ‘ 𝑅 )
ringsubdi.t
⊢ · = ( .r ‘ 𝑅 )
ringsubdi.m
⊢ − = ( -g ‘ 𝑅 )
ringsubdi.r
⊢ ( 𝜑 → 𝑅 ∈ Ring )
ringsubdi.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
ringsubdi.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
ringsubdi.z
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 )
Assertion
ringsubdi
⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 − 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) − ( 𝑋 · 𝑍 ) ) )
Proof
Step
Hyp
Ref
Expression
1
ringsubdi.b
⊢ 𝐵 = ( Base ‘ 𝑅 )
2
ringsubdi.t
⊢ · = ( .r ‘ 𝑅 )
3
ringsubdi.m
⊢ − = ( -g ‘ 𝑅 )
4
ringsubdi.r
⊢ ( 𝜑 → 𝑅 ∈ Ring )
5
ringsubdi.x
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
6
ringsubdi.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
7
ringsubdi.z
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 )
8
ringrng
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng )
9
4 8
syl
⊢ ( 𝜑 → 𝑅 ∈ Rng )
10
1 2 3 9 5 6 7
rngsubdi
⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 − 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) − ( 𝑋 · 𝑍 ) ) )