Metamath Proof Explorer


Theorem ringsubdi

Description: Ring multiplication distributes over subtraction. ( subdi analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses ringsubdi.b 𝐵 = ( Base ‘ 𝑅 )
ringsubdi.t · = ( .r𝑅 )
ringsubdi.m = ( -g𝑅 )
ringsubdi.r ( 𝜑𝑅 ∈ Ring )
ringsubdi.x ( 𝜑𝑋𝐵 )
ringsubdi.y ( 𝜑𝑌𝐵 )
ringsubdi.z ( 𝜑𝑍𝐵 )
Assertion ringsubdi ( 𝜑 → ( 𝑋 · ( 𝑌 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) ( 𝑋 · 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 ringsubdi.b 𝐵 = ( Base ‘ 𝑅 )
2 ringsubdi.t · = ( .r𝑅 )
3 ringsubdi.m = ( -g𝑅 )
4 ringsubdi.r ( 𝜑𝑅 ∈ Ring )
5 ringsubdi.x ( 𝜑𝑋𝐵 )
6 ringsubdi.y ( 𝜑𝑌𝐵 )
7 ringsubdi.z ( 𝜑𝑍𝐵 )
8 ringrng ( 𝑅 ∈ Ring → 𝑅 ∈ Rng )
9 4 8 syl ( 𝜑𝑅 ∈ Rng )
10 1 2 3 9 5 6 7 rngsubdi ( 𝜑 → ( 𝑋 · ( 𝑌 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) ( 𝑋 · 𝑍 ) ) )