Database BASIC ALGEBRAIC STRUCTURES Rings Unital rings ringsubdir  
				
		 
		
			
		 
		Description:   Ring multiplication distributes over subtraction.  ( subdir  analog.)
       (Contributed by Jeff Madsen , 19-Jun-2010)   (Revised by Mario Carneiro , 2-Jul-2014) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ringsubdi.b ⊢  𝐵   =  ( Base ‘ 𝑅  )  
					
						ringsubdi.t ⊢   ·    =  ( .r  ‘ 𝑅  )  
					
						ringsubdi.m ⊢   −    =  ( -g  ‘ 𝑅  )  
					
						ringsubdi.r ⊢  ( 𝜑   →  𝑅   ∈  Ring )  
					
						ringsubdi.x ⊢  ( 𝜑   →  𝑋   ∈  𝐵  )  
					
						ringsubdi.y ⊢  ( 𝜑   →  𝑌   ∈  𝐵  )  
					
						ringsubdi.z ⊢  ( 𝜑   →  𝑍   ∈  𝐵  )  
				
					Assertion 
					ringsubdir ⊢   ( 𝜑   →  ( ( 𝑋   −   𝑌  )  ·   𝑍  )  =  ( ( 𝑋   ·   𝑍  )  −   ( 𝑌   ·   𝑍  ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ringsubdi.b ⊢  𝐵   =  ( Base ‘ 𝑅  )  
						
							2 
								
							 
							ringsubdi.t ⊢   ·    =  ( .r  ‘ 𝑅  )  
						
							3 
								
							 
							ringsubdi.m ⊢   −    =  ( -g  ‘ 𝑅  )  
						
							4 
								
							 
							ringsubdi.r ⊢  ( 𝜑   →  𝑅   ∈  Ring )  
						
							5 
								
							 
							ringsubdi.x ⊢  ( 𝜑   →  𝑋   ∈  𝐵  )  
						
							6 
								
							 
							ringsubdi.y ⊢  ( 𝜑   →  𝑌   ∈  𝐵  )  
						
							7 
								
							 
							ringsubdi.z ⊢  ( 𝜑   →  𝑍   ∈  𝐵  )  
						
							8 
								
							 
							ringrng ⊢  ( 𝑅   ∈  Ring  →  𝑅   ∈  Rng )  
						
							9 
								4  8 
							 
							syl ⊢  ( 𝜑   →  𝑅   ∈  Rng )  
						
							10 
								1  2  3  9  5  6  7 
							 
							rngsubdir ⊢  ( 𝜑   →  ( ( 𝑋   −   𝑌  )  ·   𝑍  )  =  ( ( 𝑋   ·   𝑍  )  −   ( 𝑌   ·   𝑍  ) ) )