| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringunitnzdiv.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ringunitnzdiv.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | ringunitnzdiv.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | ringunitnzdiv.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | ringunitnzdiv.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | ringunitnzdiv.x | ⊢ ( 𝜑  →  𝑋  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 9 | 1 8 | unitcl | ⊢ ( 𝑋  ∈  ( Unit ‘ 𝑅 )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( invr ‘ 𝑅 )  =  ( invr ‘ 𝑅 ) | 
						
							| 12 | 8 11 1 | ringinvcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( invr ‘ 𝑅 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 13 | 4 6 12 | syl2anc | ⊢ ( 𝜑  →  ( ( invr ‘ 𝑅 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑒  =  ( ( invr ‘ 𝑅 ) ‘ 𝑋 )  →  ( 𝑒  ·  𝑋 )  =  ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 )  ·  𝑋 ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( 𝑒  =  ( ( invr ‘ 𝑅 ) ‘ 𝑋 )  →  ( ( 𝑒  ·  𝑋 )  =  ( 1r ‘ 𝑅 )  ↔  ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 )  ·  𝑋 )  =  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑒  =  ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) )  →  ( ( 𝑒  ·  𝑋 )  =  ( 1r ‘ 𝑅 )  ↔  ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 )  ·  𝑋 )  =  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 17 | 8 11 3 7 | unitlinv | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 )  ·  𝑋 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 18 | 4 6 17 | syl2anc | ⊢ ( 𝜑  →  ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 )  ·  𝑋 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 19 | 13 16 18 | rspcedvd | ⊢ ( 𝜑  →  ∃ 𝑒  ∈  𝐵 ( 𝑒  ·  𝑋 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 20 | 1 3 7 2 4 10 19 5 | ringinvnzdiv | ⊢ ( 𝜑  →  ( ( 𝑋  ·  𝑌 )  =   0   ↔  𝑌  =   0  ) ) |