Metamath Proof Explorer


Theorem ringunitnzdiv

Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses ringunitnzdiv.b 𝐵 = ( Base ‘ 𝑅 )
ringunitnzdiv.z 0 = ( 0g𝑅 )
ringunitnzdiv.t · = ( .r𝑅 )
ringunitnzdiv.r ( 𝜑𝑅 ∈ Ring )
ringunitnzdiv.y ( 𝜑𝑌𝐵 )
ringunitnzdiv.x ( 𝜑𝑋 ∈ ( Unit ‘ 𝑅 ) )
Assertion ringunitnzdiv ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) )

Proof

Step Hyp Ref Expression
1 ringunitnzdiv.b 𝐵 = ( Base ‘ 𝑅 )
2 ringunitnzdiv.z 0 = ( 0g𝑅 )
3 ringunitnzdiv.t · = ( .r𝑅 )
4 ringunitnzdiv.r ( 𝜑𝑅 ∈ Ring )
5 ringunitnzdiv.y ( 𝜑𝑌𝐵 )
6 ringunitnzdiv.x ( 𝜑𝑋 ∈ ( Unit ‘ 𝑅 ) )
7 eqid ( 1r𝑅 ) = ( 1r𝑅 )
8 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
9 1 8 unitcl ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → 𝑋𝐵 )
10 6 9 syl ( 𝜑𝑋𝐵 )
11 eqid ( invr𝑅 ) = ( invr𝑅 )
12 8 11 1 ringinvcl ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr𝑅 ) ‘ 𝑋 ) ∈ 𝐵 )
13 4 6 12 syl2anc ( 𝜑 → ( ( invr𝑅 ) ‘ 𝑋 ) ∈ 𝐵 )
14 oveq1 ( 𝑒 = ( ( invr𝑅 ) ‘ 𝑋 ) → ( 𝑒 · 𝑋 ) = ( ( ( invr𝑅 ) ‘ 𝑋 ) · 𝑋 ) )
15 14 eqeq1d ( 𝑒 = ( ( invr𝑅 ) ‘ 𝑋 ) → ( ( 𝑒 · 𝑋 ) = ( 1r𝑅 ) ↔ ( ( ( invr𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r𝑅 ) ) )
16 15 adantl ( ( 𝜑𝑒 = ( ( invr𝑅 ) ‘ 𝑋 ) ) → ( ( 𝑒 · 𝑋 ) = ( 1r𝑅 ) ↔ ( ( ( invr𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r𝑅 ) ) )
17 8 11 3 7 unitlinv ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( invr𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r𝑅 ) )
18 4 6 17 syl2anc ( 𝜑 → ( ( ( invr𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r𝑅 ) )
19 13 16 18 rspcedvd ( 𝜑 → ∃ 𝑒𝐵 ( 𝑒 · 𝑋 ) = ( 1r𝑅 ) )
20 1 3 7 2 4 10 19 5 ringinvnzdiv ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0𝑌 = 0 ) )