Step |
Hyp |
Ref |
Expression |
1 |
|
ringunitnzdiv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringunitnzdiv.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
ringunitnzdiv.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
ringunitnzdiv.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ringunitnzdiv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
ringunitnzdiv.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Unit ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
9 |
1 8
|
unitcl |
⊢ ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → 𝑋 ∈ 𝐵 ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
12 |
8 11 1
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
13 |
4 6 12
|
syl2anc |
⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
14 |
|
oveq1 |
⊢ ( 𝑒 = ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) → ( 𝑒 · 𝑋 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑒 = ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) → ( ( 𝑒 · 𝑋 ) = ( 1r ‘ 𝑅 ) ↔ ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑒 = ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ) → ( ( 𝑒 · 𝑋 ) = ( 1r ‘ 𝑅 ) ↔ ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) ) |
17 |
8 11 3 7
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
18 |
4 6 17
|
syl2anc |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
19 |
13 16 18
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ( 𝑒 · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
20 |
1 3 7 2 4 10 19 5
|
ringinvnzdiv |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |