Description: Tuple-wise multiplication closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringvcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | ringvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f · 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringvcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 4 | 3 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) | 
| 5 | 3 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
| 6 | 3 2 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
| 7 | 5 6 | mndvcl | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f · 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ) | 
| 8 | 4 7 | syl3an1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f · 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ) |