Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rint0 | ⊢ ( 𝑋 = ∅ → ( 𝐴 ∩ ∩ 𝑋 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq | ⊢ ( 𝑋 = ∅ → ∩ 𝑋 = ∩ ∅ ) | |
| 2 | 1 | ineq2d | ⊢ ( 𝑋 = ∅ → ( 𝐴 ∩ ∩ 𝑋 ) = ( 𝐴 ∩ ∩ ∅ ) ) |
| 3 | int0 | ⊢ ∩ ∅ = V | |
| 4 | 3 | ineq2i | ⊢ ( 𝐴 ∩ ∩ ∅ ) = ( 𝐴 ∩ V ) |
| 5 | inv1 | ⊢ ( 𝐴 ∩ V ) = 𝐴 | |
| 6 | 4 5 | eqtri | ⊢ ( 𝐴 ∩ ∩ ∅ ) = 𝐴 |
| 7 | 2 6 | eqtrdi | ⊢ ( 𝑋 = ∅ → ( 𝐴 ∩ ∩ 𝑋 ) = 𝐴 ) |