Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015) (Revised by Mario Carneiro, 5-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rintn0 | ⊢ ( ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑋 ) = ∩ 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intssuni2 | ⊢ ( ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) → ∩ 𝑋 ⊆ ∪ 𝒫 𝐴 ) | |
2 | ssid | ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐴 | |
3 | sspwuni | ⊢ ( 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝐴 ) | |
4 | 2 3 | mpbi | ⊢ ∪ 𝒫 𝐴 ⊆ 𝐴 |
5 | 1 4 | sstrdi | ⊢ ( ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) → ∩ 𝑋 ⊆ 𝐴 ) |
6 | sseqin2 | ⊢ ( ∩ 𝑋 ⊆ 𝐴 ↔ ( 𝐴 ∩ ∩ 𝑋 ) = ∩ 𝑋 ) | |
7 | 5 6 | sylib | ⊢ ( ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑋 ) = ∩ 𝑋 ) |