Metamath Proof Explorer


Theorem rintn0

Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015) (Revised by Mario Carneiro, 5-Jun-2015)

Ref Expression
Assertion rintn0 ( ( 𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅ ) → ( 𝐴 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 intssuni2 ( ( 𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅ ) → 𝑋 𝒫 𝐴 )
2 ssid 𝒫 𝐴 ⊆ 𝒫 𝐴
3 sspwuni ( 𝒫 𝐴 ⊆ 𝒫 𝐴 𝒫 𝐴𝐴 )
4 2 3 mpbi 𝒫 𝐴𝐴
5 1 4 sstrdi ( ( 𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅ ) → 𝑋𝐴 )
6 sseqin2 ( 𝑋𝐴 ↔ ( 𝐴 𝑋 ) = 𝑋 )
7 5 6 sylib ( ( 𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅ ) → ( 𝐴 𝑋 ) = 𝑋 )