Metamath Proof Explorer


Theorem rintopn

Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis 1open.1 𝑋 = 𝐽
Assertion rintopn ( ( 𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin ) → ( 𝑋 𝐴 ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 1open.1 𝑋 = 𝐽
2 intiin 𝐴 = 𝑥𝐴 𝑥
3 2 ineq2i ( 𝑋 𝐴 ) = ( 𝑋 𝑥𝐴 𝑥 )
4 dfss3 ( 𝐴𝐽 ↔ ∀ 𝑥𝐴 𝑥𝐽 )
5 1 riinopn ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥𝐽 ) → ( 𝑋 𝑥𝐴 𝑥 ) ∈ 𝐽 )
6 5 3com23 ( ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐴 𝑥𝐽𝐴 ∈ Fin ) → ( 𝑋 𝑥𝐴 𝑥 ) ∈ 𝐽 )
7 4 6 syl3an2b ( ( 𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin ) → ( 𝑋 𝑥𝐴 𝑥 ) ∈ 𝐽 )
8 3 7 eqeltrid ( ( 𝐽 ∈ Top ∧ 𝐴𝐽𝐴 ∈ Fin ) → ( 𝑋 𝐴 ) ∈ 𝐽 )