Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1open.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | rintopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin ) → ( 𝑋 ∩ ∩ 𝐴 ) ∈ 𝐽 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1open.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | intiin | ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | 2 | ineq2i | ⊢ ( 𝑋 ∩ ∩ 𝐴 ) = ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥 ) | 
| 4 | dfss3 | ⊢ ( 𝐴 ⊆ 𝐽 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐽 ) | |
| 5 | 1 | riinopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐽 ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥 ) ∈ 𝐽 ) | 
| 6 | 5 | 3com23 | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ Fin ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥 ) ∈ 𝐽 ) | 
| 7 | 4 6 | syl3an2b | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝑥 ) ∈ 𝐽 ) | 
| 8 | 3 7 | eqeltrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin ) → ( 𝑋 ∩ ∩ 𝐴 ) ∈ 𝐽 ) |