Step |
Hyp |
Ref |
Expression |
1 |
|
rinvbij.1 |
⊢ Fun 𝐹 |
2 |
|
rinvbij.2 |
⊢ ◡ 𝐹 = 𝐹 |
3 |
|
rinvbij.3a |
⊢ ( 𝐹 “ 𝐴 ) ⊆ 𝐵 |
4 |
|
rinvbij.3b |
⊢ ( 𝐹 “ 𝐵 ) ⊆ 𝐴 |
5 |
|
rinvbij.4a |
⊢ 𝐴 ⊆ dom 𝐹 |
6 |
|
rinvbij.4b |
⊢ 𝐵 ⊆ dom 𝐹 |
7 |
|
fdmrn |
⊢ ( Fun 𝐹 ↔ 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
8 |
1 7
|
mpbi |
⊢ 𝐹 : dom 𝐹 ⟶ ran 𝐹 |
9 |
2
|
funeqi |
⊢ ( Fun ◡ 𝐹 ↔ Fun 𝐹 ) |
10 |
1 9
|
mpbir |
⊢ Fun ◡ 𝐹 |
11 |
|
df-f1 |
⊢ ( 𝐹 : dom 𝐹 –1-1→ ran 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ ran 𝐹 ∧ Fun ◡ 𝐹 ) ) |
12 |
8 10 11
|
mpbir2an |
⊢ 𝐹 : dom 𝐹 –1-1→ ran 𝐹 |
13 |
|
f1ores |
⊢ ( ( 𝐹 : dom 𝐹 –1-1→ ran 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ) |
14 |
12 5 13
|
mp2an |
⊢ ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) |
15 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐵 ) ⊆ 𝐴 ↔ 𝐵 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) |
16 |
1 6 15
|
mp2an |
⊢ ( ( 𝐹 “ 𝐵 ) ⊆ 𝐴 ↔ 𝐵 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) |
17 |
4 16
|
mpbi |
⊢ 𝐵 ⊆ ( ◡ 𝐹 “ 𝐴 ) |
18 |
2
|
imaeq1i |
⊢ ( ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
19 |
17 18
|
sseqtri |
⊢ 𝐵 ⊆ ( 𝐹 “ 𝐴 ) |
20 |
3 19
|
eqssi |
⊢ ( 𝐹 “ 𝐴 ) = 𝐵 |
21 |
|
f1oeq3 |
⊢ ( ( 𝐹 “ 𝐴 ) = 𝐵 → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐵 ) ) |
22 |
20 21
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐵 ) |
23 |
14 22
|
mpbi |
⊢ ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐵 |