Metamath Proof Explorer


Theorem rinvf1o

Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses rinvbij.1 Fun 𝐹
rinvbij.2 𝐹 = 𝐹
rinvbij.3a ( 𝐹𝐴 ) ⊆ 𝐵
rinvbij.3b ( 𝐹𝐵 ) ⊆ 𝐴
rinvbij.4a 𝐴 ⊆ dom 𝐹
rinvbij.4b 𝐵 ⊆ dom 𝐹
Assertion rinvf1o ( 𝐹𝐴 ) : 𝐴1-1-onto𝐵

Proof

Step Hyp Ref Expression
1 rinvbij.1 Fun 𝐹
2 rinvbij.2 𝐹 = 𝐹
3 rinvbij.3a ( 𝐹𝐴 ) ⊆ 𝐵
4 rinvbij.3b ( 𝐹𝐵 ) ⊆ 𝐴
5 rinvbij.4a 𝐴 ⊆ dom 𝐹
6 rinvbij.4b 𝐵 ⊆ dom 𝐹
7 fdmrn ( Fun 𝐹𝐹 : dom 𝐹 ⟶ ran 𝐹 )
8 1 7 mpbi 𝐹 : dom 𝐹 ⟶ ran 𝐹
9 2 funeqi ( Fun 𝐹 ↔ Fun 𝐹 )
10 1 9 mpbir Fun 𝐹
11 df-f1 ( 𝐹 : dom 𝐹1-1→ ran 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ ran 𝐹 ∧ Fun 𝐹 ) )
12 8 10 11 mpbir2an 𝐹 : dom 𝐹1-1→ ran 𝐹
13 f1ores ( ( 𝐹 : dom 𝐹1-1→ ran 𝐹𝐴 ⊆ dom 𝐹 ) → ( 𝐹𝐴 ) : 𝐴1-1-onto→ ( 𝐹𝐴 ) )
14 12 5 13 mp2an ( 𝐹𝐴 ) : 𝐴1-1-onto→ ( 𝐹𝐴 )
15 funimass3 ( ( Fun 𝐹𝐵 ⊆ dom 𝐹 ) → ( ( 𝐹𝐵 ) ⊆ 𝐴𝐵 ⊆ ( 𝐹𝐴 ) ) )
16 1 6 15 mp2an ( ( 𝐹𝐵 ) ⊆ 𝐴𝐵 ⊆ ( 𝐹𝐴 ) )
17 4 16 mpbi 𝐵 ⊆ ( 𝐹𝐴 )
18 2 imaeq1i ( 𝐹𝐴 ) = ( 𝐹𝐴 )
19 17 18 sseqtri 𝐵 ⊆ ( 𝐹𝐴 )
20 3 19 eqssi ( 𝐹𝐴 ) = 𝐵
21 f1oeq3 ( ( 𝐹𝐴 ) = 𝐵 → ( ( 𝐹𝐴 ) : 𝐴1-1-onto→ ( 𝐹𝐴 ) ↔ ( 𝐹𝐴 ) : 𝐴1-1-onto𝐵 ) )
22 20 21 ax-mp ( ( 𝐹𝐴 ) : 𝐴1-1-onto→ ( 𝐹𝐴 ) ↔ ( 𝐹𝐴 ) : 𝐴1-1-onto𝐵 )
23 14 22 mpbi ( 𝐹𝐴 ) : 𝐴1-1-onto𝐵