| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rinvmod.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | rinvmod.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | rinvmod.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | rinvmod.m | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 5 |  | rinvmod.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 6 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐵 )  →  𝐺  ∈  CMnd ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐵 )  →  𝑤  ∈  𝐵 ) | 
						
							| 8 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐵 )  →  𝐴  ∈  𝐵 ) | 
						
							| 9 | 1 3 | cmncom | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑤  ∈  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝑤  +  𝐴 )  =  ( 𝐴  +  𝑤 ) ) | 
						
							| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐵 )  →  ( 𝑤  +  𝐴 )  =  ( 𝐴  +  𝑤 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐴  +  𝑤 )  =   0  )  →  ( 𝑤  +  𝐴 )  =  ( 𝐴  +  𝑤 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐴  +  𝑤 )  =   0  )  →  ( 𝐴  +  𝑤 )  =   0  ) | 
						
							| 13 | 11 12 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐴  +  𝑤 )  =   0  )  →  ( 𝑤  +  𝐴 )  =   0  ) | 
						
							| 14 | 13 12 | jca | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐴  +  𝑤 )  =   0  )  →  ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  ) ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐵 )  →  ( ( 𝐴  +  𝑤 )  =   0   →  ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  ) ) ) | 
						
							| 16 | 15 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐵 ( ( 𝐴  +  𝑤 )  =   0   →  ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  ) ) ) | 
						
							| 17 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 18 | 4 17 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 19 | 1 2 3 18 5 | mndinvmod | ⊢ ( 𝜑  →  ∃* 𝑤  ∈  𝐵 ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  ) ) | 
						
							| 20 |  | rmoim | ⊢ ( ∀ 𝑤  ∈  𝐵 ( ( 𝐴  +  𝑤 )  =   0   →  ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  ) )  →  ( ∃* 𝑤  ∈  𝐵 ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  →  ∃* 𝑤  ∈  𝐵 ( 𝐴  +  𝑤 )  =   0  ) ) | 
						
							| 21 | 16 19 20 | sylc | ⊢ ( 𝜑  →  ∃* 𝑤  ∈  𝐵 ( 𝐴  +  𝑤 )  =   0  ) |