Description: Property of restricted iota. Compare iota1 . (Contributed by Mario Carneiro, 15-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | riota1 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
2 | iota1 | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = 𝑥 ) ) | |
3 | 1 2 | sylbi | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = 𝑥 ) ) |
4 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
5 | 4 | eqeq1i | ⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝑥 ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = 𝑥 ) |
6 | 3 5 | bitr4di | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝑥 ) ) |