Metamath Proof Explorer


Theorem riota1a

Description: Property of iota. (Contributed by NM, 23-Aug-2011)

Ref Expression
Assertion riota1a ( ( 𝑥𝐴 ∧ ∃! 𝑥𝐴 𝜑 ) → ( 𝜑 ↔ ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = 𝑥 ) )

Proof

Step Hyp Ref Expression
1 ibar ( 𝑥𝐴 → ( 𝜑 ↔ ( 𝑥𝐴𝜑 ) ) )
2 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
3 iota1 ( ∃! 𝑥 ( 𝑥𝐴𝜑 ) → ( ( 𝑥𝐴𝜑 ) ↔ ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = 𝑥 ) )
4 2 3 sylbi ( ∃! 𝑥𝐴 𝜑 → ( ( 𝑥𝐴𝜑 ) ↔ ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = 𝑥 ) )
5 1 4 sylan9bb ( ( 𝑥𝐴 ∧ ∃! 𝑥𝐴 𝜑 ) → ( 𝜑 ↔ ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = 𝑥 ) )