Description: Property of iota. (Contributed by NM, 23-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riota1a | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜑 ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 2 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 3 | iota1 | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = 𝑥 ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = 𝑥 ) ) |
| 5 | 1 4 | sylan9bb | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜑 ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = 𝑥 ) ) |