| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riota2df.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
riota2df.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
| 3 |
|
riota2df.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
| 4 |
|
riota2df.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 5 |
|
riota2df.5 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → 𝐵 ∈ 𝐴 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ∃! 𝑥 ∈ 𝐴 𝜓 ) |
| 8 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 10 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
| 11 |
6
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ 𝐴 ) |
| 12 |
10 11
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 13 |
12
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 14 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 15 |
13 14
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ 𝜒 ) ) |
| 16 |
|
nfreu1 |
⊢ Ⅎ 𝑥 ∃! 𝑥 ∈ 𝐴 𝜓 |
| 17 |
1 16
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) |
| 18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → Ⅎ 𝑥 𝜒 ) |
| 19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → Ⅎ 𝑥 𝐵 ) |
| 20 |
6 9 15 17 18 19
|
iota2df |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( 𝜒 ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) = 𝐵 ) ) |
| 21 |
|
df-riota |
⊢ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 22 |
21
|
eqeq1i |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) = 𝐵 ) |
| 23 |
20 22
|
bitr4di |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( 𝜒 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) |