Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Restricted iota (description binder)
riota2f
Metamath Proof Explorer
Description: This theorem shows a condition that allows us to represent a descriptor
with a class expression B . (Contributed by NM , 23-Aug-2011)
(Revised by Mario Carneiro , 15-Oct-2016)
Ref
Expression
Hypotheses
riota2f.1
⊢ Ⅎ 𝑥 𝐵
riota2f.2
⊢ Ⅎ 𝑥 𝜓
riota2f.3
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) )
Assertion
riota2f
⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
riota2f.1
⊢ Ⅎ 𝑥 𝐵
2
riota2f.2
⊢ Ⅎ 𝑥 𝜓
3
riota2f.3
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) )
4
1
nfel1
⊢ Ⅎ 𝑥 𝐵 ∈ 𝐴
5
1
a1i
⊢ ( 𝐵 ∈ 𝐴 → Ⅎ 𝑥 𝐵 )
6
2
a1i
⊢ ( 𝐵 ∈ 𝐴 → Ⅎ 𝑥 𝜓 )
7
id
⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 )
8
3
adantl
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) )
9
4 5 6 7 8
riota2df
⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝐵 ) )