Metamath Proof Explorer


Theorem riota2f

Description: This theorem shows a condition that allows us to represent a descriptor with a class expression B . (Contributed by NM, 23-Aug-2011) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riota2f.1 𝑥 𝐵
riota2f.2 𝑥 𝜓
riota2f.3 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
Assertion riota2f ( ( 𝐵𝐴 ∧ ∃! 𝑥𝐴 𝜑 ) → ( 𝜓 ↔ ( 𝑥𝐴 𝜑 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 riota2f.1 𝑥 𝐵
2 riota2f.2 𝑥 𝜓
3 riota2f.3 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
4 1 nfel1 𝑥 𝐵𝐴
5 1 a1i ( 𝐵𝐴 𝑥 𝐵 )
6 2 a1i ( 𝐵𝐴 → Ⅎ 𝑥 𝜓 )
7 id ( 𝐵𝐴𝐵𝐴 )
8 3 adantl ( ( 𝐵𝐴𝑥 = 𝐵 ) → ( 𝜑𝜓 ) )
9 4 5 6 7 8 riota2df ( ( 𝐵𝐴 ∧ ∃! 𝑥𝐴 𝜑 ) → ( 𝜓 ↔ ( 𝑥𝐴 𝜑 ) = 𝐵 ) )