Metamath Proof Explorer


Theorem riota5

Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011) (Revised by Mario Carneiro, 6-Dec-2016)

Ref Expression
Hypotheses riota5.1 ( 𝜑𝐵𝐴 )
riota5.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝑥 = 𝐵 ) )
Assertion riota5 ( 𝜑 → ( 𝑥𝐴 𝜓 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 riota5.1 ( 𝜑𝐵𝐴 )
2 riota5.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝑥 = 𝐵 ) )
3 nfcvd ( 𝜑 𝑥 𝐵 )
4 3 1 2 riota5f ( 𝜑 → ( 𝑥𝐴 𝜓 ) = 𝐵 )