Metamath Proof Explorer
Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011) (Revised by Mario Carneiro, 6-Dec-2016)
|
|
Ref |
Expression |
|
Hypotheses |
riota5.1 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
|
|
riota5.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝑥 = 𝐵 ) ) |
|
Assertion |
riota5 |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riota5.1 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 2 |
|
riota5.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝑥 = 𝐵 ) ) |
| 3 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
| 4 |
3 1 2
|
riota5f |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) |