Step |
Hyp |
Ref |
Expression |
1 |
|
riota5f.1 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
2 |
|
riota5f.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
3 |
|
riota5f.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝑥 = 𝐵 ) ) |
4 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) ) |
5 |
|
trud |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → ⊤ ) |
6 |
|
reu6i |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) → ∃! 𝑥 ∈ 𝐴 𝜓 ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → ∃! 𝑥 ∈ 𝐴 𝜓 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
9 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
10 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) |
11 |
9 10
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) |
12 |
8 11
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) |
13 |
|
nfcvd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → Ⅎ 𝑥 𝑦 ) |
14 |
|
nfvd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → Ⅎ 𝑥 ⊤ ) |
15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → 𝑦 ∈ 𝐴 ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) |
17 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) |
18 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑦 ∈ 𝐴 ) |
19 |
16 18
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑥 ∈ 𝐴 ) |
20 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) |
21 |
17 19 20
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝑥 = 𝑦 ) ) |
22 |
16 21
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝜓 ) |
23 |
|
trud |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ⊤ ) |
24 |
22 23
|
2thd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ ⊤ ) ) |
25 |
12 13 14 15 24
|
riota2df |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( ⊤ ↔ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
26 |
7 25
|
mpdan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → ( ⊤ ↔ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
27 |
5 26
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) |
28 |
27
|
expr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
30 |
|
rspsbc |
⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) → [ 𝐵 / 𝑦 ] ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) ) |
31 |
2 29 30
|
sylc |
⊢ ( 𝜑 → [ 𝐵 / 𝑦 ] ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
32 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ) |
33 |
32 1
|
nfeqd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝐵 ) |
34 |
8 33
|
nfan1 |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 = 𝐵 ) |
35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
36 |
35
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐵 ) ) |
37 |
36
|
bibi2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( 𝜓 ↔ 𝑥 = 𝑦 ) ↔ ( 𝜓 ↔ 𝑥 = 𝐵 ) ) ) |
38 |
34 37
|
ralbid |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) ) ) |
39 |
35
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) |
40 |
38 39
|
imbi12d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) ) |
41 |
2 40
|
sbcied |
⊢ ( 𝜑 → ( [ 𝐵 / 𝑦 ] ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) ) |
42 |
31 41
|
mpbid |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) |
43 |
4 42
|
mpd |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) |