Description: Equivalent wff's yield equal restricted class abstractions (deduction form). ( rabbidva analog.) (Contributed by NM, 17-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | riotabidva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | riotabidva | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotabidva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 1 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 3 | 2 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 4 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 5 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜒 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) | |
| 6 | 3 4 5 | 3eqtr4g | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ∈ 𝐴 𝜒 ) ) |