Description: Membership law for "the unique element in A such that ph ". (Contributed by NM, 21-Aug-2011) (Revised by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | riotacl2 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
2 | iotacl | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) | |
3 | 1 2 | sylbi | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
4 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
5 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
6 | 3 4 5 | 3eltr4g | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) |