Metamath Proof Explorer


Theorem riotaclb

Description: Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016) (Revised by NM, 13-Sep-2018)

Ref Expression
Assertion riotaclb ( ¬ ∅ ∈ 𝐴 → ( ∃! 𝑥𝐴 𝜑 ↔ ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 riotacl ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ∈ 𝐴 )
2 riotaund ( ¬ ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) = ∅ )
3 2 eleq1d ( ¬ ∃! 𝑥𝐴 𝜑 → ( ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ↔ ∅ ∈ 𝐴 ) )
4 3 notbid ( ¬ ∃! 𝑥𝐴 𝜑 → ( ¬ ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ↔ ¬ ∅ ∈ 𝐴 ) )
5 4 biimprcd ( ¬ ∅ ∈ 𝐴 → ( ¬ ∃! 𝑥𝐴 𝜑 → ¬ ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ) )
6 5 con4d ( ¬ ∅ ∈ 𝐴 → ( ( 𝑥𝐴 𝜑 ) ∈ 𝐴 → ∃! 𝑥𝐴 𝜑 ) )
7 1 6 impbid2 ( ¬ ∅ ∈ 𝐴 → ( ∃! 𝑥𝐴 𝜑 ↔ ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ) )