Metamath Proof Explorer


Theorem riotaclbgBAD

Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotaclbgBAD ( 𝐴𝑉 → ( ∃! 𝑥𝐴 𝜑 ↔ ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 riotacl ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ∈ 𝐴 )
2 undefnel2 ( 𝐴𝑉 → ¬ ( Undef ‘ 𝐴 ) ∈ 𝐴 )
3 iffalse ( ¬ ∃! 𝑥𝐴 𝜑 → if ( ∃! 𝑥𝐴 𝜑 , ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) , ( Undef ‘ { 𝑥𝑥𝐴 } ) ) = ( Undef ‘ { 𝑥𝑥𝐴 } ) )
4 ax-riotaBAD ( 𝑥𝐴 𝜑 ) = if ( ∃! 𝑥𝐴 𝜑 , ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) , ( Undef ‘ { 𝑥𝑥𝐴 } ) )
5 abid1 𝐴 = { 𝑥𝑥𝐴 }
6 5 fveq2i ( Undef ‘ 𝐴 ) = ( Undef ‘ { 𝑥𝑥𝐴 } )
7 3 4 6 3eqtr4g ( ¬ ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) = ( Undef ‘ 𝐴 ) )
8 7 eleq1d ( ¬ ∃! 𝑥𝐴 𝜑 → ( ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ↔ ( Undef ‘ 𝐴 ) ∈ 𝐴 ) )
9 8 notbid ( ¬ ∃! 𝑥𝐴 𝜑 → ( ¬ ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ↔ ¬ ( Undef ‘ 𝐴 ) ∈ 𝐴 ) )
10 2 9 syl5ibrcom ( 𝐴𝑉 → ( ¬ ∃! 𝑥𝐴 𝜑 → ¬ ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ) )
11 10 con4d ( 𝐴𝑉 → ( ( 𝑥𝐴 𝜑 ) ∈ 𝐴 → ∃! 𝑥𝐴 𝜑 ) )
12 1 11 impbid2 ( 𝐴𝑉 → ( ∃! 𝑥𝐴 𝜑 ↔ ( 𝑥𝐴 𝜑 ) ∈ 𝐴 ) )