Step |
Hyp |
Ref |
Expression |
1 |
|
riotacl |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) |
2 |
|
undefnel2 |
⊢ ( 𝐴 ∈ 𝑉 → ¬ ( Undef ‘ 𝐴 ) ∈ 𝐴 ) |
3 |
|
iffalse |
⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → if ( ∃! 𝑥 ∈ 𝐴 𝜑 , ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) , ( Undef ‘ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) ) = ( Undef ‘ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) ) |
4 |
|
ax-riotaBAD |
⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = if ( ∃! 𝑥 ∈ 𝐴 𝜑 , ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) , ( Undef ‘ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) ) |
5 |
|
abid1 |
⊢ 𝐴 = { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
6 |
5
|
fveq2i |
⊢ ( Undef ‘ 𝐴 ) = ( Undef ‘ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) |
7 |
3 4 6
|
3eqtr4g |
⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( Undef ‘ 𝐴 ) ) |
8 |
7
|
eleq1d |
⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ↔ ( Undef ‘ 𝐴 ) ∈ 𝐴 ) ) |
9 |
8
|
notbid |
⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ¬ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ↔ ¬ ( Undef ‘ 𝐴 ) ∈ 𝐴 ) ) |
10 |
2 9
|
syl5ibrcom |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ¬ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) ) |
11 |
10
|
con4d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 → ∃! 𝑥 ∈ 𝐴 𝜑 ) ) |
12 |
1 11
|
impbid2 |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) ) |