Metamath Proof Explorer


Theorem riotaeqbidva

Description: Equivalent wff's yield equal restricted definition binders (deduction form). ( raleqbidva analog.) (Contributed by Thierry Arnoux, 29-Jan-2025)

Ref Expression
Hypotheses riotaeqbidva.1 ( 𝜑𝐴 = 𝐵 )
riotaeqbidva.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion riotaeqbidva ( 𝜑 → ( 𝑥𝐴 𝜓 ) = ( 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 riotaeqbidva.1 ( 𝜑𝐴 = 𝐵 )
2 riotaeqbidva.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 riotabidva ( 𝜑 → ( 𝑥𝐴 𝜓 ) = ( 𝑥𝐴 𝜒 ) )
4 1 riotaeqdv ( 𝜑 → ( 𝑥𝐴 𝜒 ) = ( 𝑥𝐵 𝜒 ) )
5 3 4 eqtrd ( 𝜑 → ( 𝑥𝐴 𝜓 ) = ( 𝑥𝐵 𝜒 ) )