Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | riotaeqdv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | riotaeqdv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqdv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 3 | 2 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 4 | 3 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 5 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 6 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
| 7 | 4 5 6 | 3eqtr4g | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |