Metamath Proof Explorer


Theorem riotaeqdv

Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011)

Ref Expression
Hypothesis riotaeqdv.1 ( 𝜑𝐴 = 𝐵 )
Assertion riotaeqdv ( 𝜑 → ( 𝑥𝐴 𝜓 ) = ( 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 riotaeqdv.1 ( 𝜑𝐴 = 𝐵 )
2 1 eleq2d ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
3 2 anbi1d ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜓 ) ) )
4 3 iotabidv ( 𝜑 → ( ℩ 𝑥 ( 𝑥𝐴𝜓 ) ) = ( ℩ 𝑥 ( 𝑥𝐵𝜓 ) ) )
5 df-riota ( 𝑥𝐴 𝜓 ) = ( ℩ 𝑥 ( 𝑥𝐴𝜓 ) )
6 df-riota ( 𝑥𝐵 𝜓 ) = ( ℩ 𝑥 ( 𝑥𝐵𝜓 ) )
7 4 5 6 3eqtr4g ( 𝜑 → ( 𝑥𝐴 𝜓 ) = ( 𝑥𝐵 𝜓 ) )