Metamath Proof Explorer


Theorem riotaocN

Description: The orthocomplement of the unique poset element such that ps . ( riotaneg analog.) (Contributed by NM, 16-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses riotaoc.b 𝐵 = ( Base ‘ 𝐾 )
riotaoc.o = ( oc ‘ 𝐾 )
riotaoc.a ( 𝑥 = ( 𝑦 ) → ( 𝜑𝜓 ) )
Assertion riotaocN ( ( 𝐾 ∈ OP ∧ ∃! 𝑥𝐵 𝜑 ) → ( 𝑥𝐵 𝜑 ) = ( ‘ ( 𝑦𝐵 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 riotaoc.b 𝐵 = ( Base ‘ 𝐾 )
2 riotaoc.o = ( oc ‘ 𝐾 )
3 riotaoc.a ( 𝑥 = ( 𝑦 ) → ( 𝜑𝜓 ) )
4 nfcv 𝑦
5 nfriota1 𝑦 ( 𝑦𝐵 𝜓 )
6 4 5 nffv 𝑦 ( ‘ ( 𝑦𝐵 𝜓 ) )
7 1 2 opoccl ( ( 𝐾 ∈ OP ∧ 𝑦𝐵 ) → ( 𝑦 ) ∈ 𝐵 )
8 1 2 opoccl ( ( 𝐾 ∈ OP ∧ ( 𝑦𝐵 𝜓 ) ∈ 𝐵 ) → ( ‘ ( 𝑦𝐵 𝜓 ) ) ∈ 𝐵 )
9 fveq2 ( 𝑦 = ( 𝑦𝐵 𝜓 ) → ( 𝑦 ) = ( ‘ ( 𝑦𝐵 𝜓 ) ) )
10 1 2 opoccl ( ( 𝐾 ∈ OP ∧ 𝑥𝐵 ) → ( 𝑥 ) ∈ 𝐵 )
11 1 2 opcon2b ( ( 𝐾 ∈ OP ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 = ( 𝑦 ) ↔ 𝑦 = ( 𝑥 ) ) )
12 10 11 reuhypd ( ( 𝐾 ∈ OP ∧ 𝑥𝐵 ) → ∃! 𝑦𝐵 𝑥 = ( 𝑦 ) )
13 6 7 8 3 9 12 riotaxfrd ( ( 𝐾 ∈ OP ∧ ∃! 𝑥𝐵 𝜑 ) → ( 𝑥𝐵 𝜑 ) = ( ‘ ( 𝑦𝐵 𝜓 ) ) )