| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riotaoc.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
riotaoc.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 3 |
|
riotaoc.a |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑦 ⊥ |
| 5 |
|
nfriota1 |
⊢ Ⅎ 𝑦 ( ℩ 𝑦 ∈ 𝐵 𝜓 ) |
| 6 |
4 5
|
nffv |
⊢ Ⅎ 𝑦 ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) |
| 7 |
1 2
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑦 ∈ 𝐵 ) → ( ⊥ ‘ 𝑦 ) ∈ 𝐵 ) |
| 8 |
1 2
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ∈ 𝐵 ) → ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ∈ 𝐵 ) |
| 9 |
|
fveq2 |
⊢ ( 𝑦 = ( ℩ 𝑦 ∈ 𝐵 𝜓 ) → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| 10 |
1 2
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ) → ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ) |
| 11 |
1 2
|
opcon2b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = ( ⊥ ‘ 𝑦 ) ↔ 𝑦 = ( ⊥ ‘ 𝑥 ) ) ) |
| 12 |
10 11
|
reuhypd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 𝑥 = ( ⊥ ‘ 𝑦 ) ) |
| 13 |
6 7 8 3 9 12
|
riotaxfrd |
⊢ ( ( 𝐾 ∈ OP ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐵 𝜑 ) = ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ) |