Step |
Hyp |
Ref |
Expression |
1 |
|
riotaoc.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
riotaoc.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
3 |
|
riotaoc.a |
⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 ⊥ |
5 |
|
nfriota1 |
⊢ Ⅎ 𝑦 ( ℩ 𝑦 ∈ 𝐵 𝜓 ) |
6 |
4 5
|
nffv |
⊢ Ⅎ 𝑦 ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) |
7 |
1 2
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑦 ∈ 𝐵 ) → ( ⊥ ‘ 𝑦 ) ∈ 𝐵 ) |
8 |
1 2
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ∈ 𝐵 ) → ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ∈ 𝐵 ) |
9 |
|
fveq2 |
⊢ ( 𝑦 = ( ℩ 𝑦 ∈ 𝐵 𝜓 ) → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
10 |
1 2
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ) → ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
1 2
|
opcon2b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = ( ⊥ ‘ 𝑦 ) ↔ 𝑦 = ( ⊥ ‘ 𝑥 ) ) ) |
12 |
10 11
|
reuhypd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 𝑥 = ( ⊥ ‘ 𝑦 ) ) |
13 |
6 7 8 3 9 12
|
riotaxfrd |
⊢ ( ( 𝐾 ∈ OP ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐵 𝜑 ) = ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ) |