Description: Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | riotaprop.0 | ⊢ Ⅎ 𝑥 𝜓 | |
riotaprop.1 | ⊢ 𝐵 = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) | ||
riotaprop.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | riotaprop | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaprop.0 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | riotaprop.1 | ⊢ 𝐵 = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) | |
3 | riotaprop.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
4 | riotacl | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) | |
5 | 2 4 | eqeltrid | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → 𝐵 ∈ 𝐴 ) |
6 | 2 | eqcomi | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝐵 |
7 | nfriota1 | ⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝐴 𝜑 ) | |
8 | 2 7 | nfcxfr | ⊢ Ⅎ 𝑥 𝐵 |
9 | 8 1 3 | riota2f | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝐵 ) ) |
10 | 6 9 | mpbiri | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → 𝜓 ) |
11 | 5 10 | mpancom | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) |
12 | 5 11 | jca | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) |