Metamath Proof Explorer


Theorem riotaprop

Description: Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013)

Ref Expression
Hypotheses riotaprop.0 𝑥 𝜓
riotaprop.1 𝐵 = ( 𝑥𝐴 𝜑 )
riotaprop.2 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
Assertion riotaprop ( ∃! 𝑥𝐴 𝜑 → ( 𝐵𝐴𝜓 ) )

Proof

Step Hyp Ref Expression
1 riotaprop.0 𝑥 𝜓
2 riotaprop.1 𝐵 = ( 𝑥𝐴 𝜑 )
3 riotaprop.2 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
4 riotacl ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ∈ 𝐴 )
5 2 4 eqeltrid ( ∃! 𝑥𝐴 𝜑𝐵𝐴 )
6 2 eqcomi ( 𝑥𝐴 𝜑 ) = 𝐵
7 nfriota1 𝑥 ( 𝑥𝐴 𝜑 )
8 2 7 nfcxfr 𝑥 𝐵
9 8 1 3 riota2f ( ( 𝐵𝐴 ∧ ∃! 𝑥𝐴 𝜑 ) → ( 𝜓 ↔ ( 𝑥𝐴 𝜑 ) = 𝐵 ) )
10 6 9 mpbiri ( ( 𝐵𝐴 ∧ ∃! 𝑥𝐴 𝜑 ) → 𝜓 )
11 5 10 mpancom ( ∃! 𝑥𝐴 𝜑𝜓 )
12 5 11 jca ( ∃! 𝑥𝐴 𝜑 → ( 𝐵𝐴𝜓 ) )