Metamath Proof Explorer


Theorem riotassuni

Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotassuni ( 𝑥𝐴 𝜑 ) ⊆ ( 𝒫 𝐴 𝐴 )

Proof

Step Hyp Ref Expression
1 riotauni ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) = { 𝑥𝐴𝜑 } )
2 ssrab2 { 𝑥𝐴𝜑 } ⊆ 𝐴
3 2 unissi { 𝑥𝐴𝜑 } ⊆ 𝐴
4 ssun2 𝐴 ⊆ ( 𝒫 𝐴 𝐴 )
5 3 4 sstri { 𝑥𝐴𝜑 } ⊆ ( 𝒫 𝐴 𝐴 )
6 1 5 eqsstrdi ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ⊆ ( 𝒫 𝐴 𝐴 ) )
7 riotaund ( ¬ ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) = ∅ )
8 0ss ∅ ⊆ ( 𝒫 𝐴 𝐴 )
9 7 8 eqsstrdi ( ¬ ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ⊆ ( 𝒫 𝐴 𝐴 ) )
10 6 9 pm2.61i ( 𝑥𝐴 𝜑 ) ⊆ ( 𝒫 𝐴 𝐴 )