Metamath Proof Explorer


Theorem riotasv2d

Description: Value of description binder D for a single-valued class expression C ( y ) (as in e.g. reusv2 ). Special case of riota2f . (Contributed by NM, 2-Mar-2013)

Ref Expression
Hypotheses riotasv2d.1 𝑦 𝜑
riotasv2d.2 ( 𝜑 𝑦 𝐹 )
riotasv2d.3 ( 𝜑 → Ⅎ 𝑦 𝜒 )
riotasv2d.4 ( 𝜑𝐷 = ( 𝑥𝐴𝑦𝐵 ( 𝜓𝑥 = 𝐶 ) ) )
riotasv2d.5 ( ( 𝜑𝑦 = 𝐸 ) → ( 𝜓𝜒 ) )
riotasv2d.6 ( ( 𝜑𝑦 = 𝐸 ) → 𝐶 = 𝐹 )
riotasv2d.7 ( 𝜑𝐷𝐴 )
riotasv2d.8 ( 𝜑𝐸𝐵 )
riotasv2d.9 ( 𝜑𝜒 )
Assertion riotasv2d ( ( 𝜑𝐴𝑉 ) → 𝐷 = 𝐹 )

Proof

Step Hyp Ref Expression
1 riotasv2d.1 𝑦 𝜑
2 riotasv2d.2 ( 𝜑 𝑦 𝐹 )
3 riotasv2d.3 ( 𝜑 → Ⅎ 𝑦 𝜒 )
4 riotasv2d.4 ( 𝜑𝐷 = ( 𝑥𝐴𝑦𝐵 ( 𝜓𝑥 = 𝐶 ) ) )
5 riotasv2d.5 ( ( 𝜑𝑦 = 𝐸 ) → ( 𝜓𝜒 ) )
6 riotasv2d.6 ( ( 𝜑𝑦 = 𝐸 ) → 𝐶 = 𝐹 )
7 riotasv2d.7 ( 𝜑𝐷𝐴 )
8 riotasv2d.8 ( 𝜑𝐸𝐵 )
9 riotasv2d.9 ( 𝜑𝜒 )
10 elex ( 𝐴𝑉𝐴 ∈ V )
11 8 adantr ( ( 𝜑𝐴 ∈ V ) → 𝐸𝐵 )
12 9 adantr ( ( 𝜑𝐴 ∈ V ) → 𝜒 )
13 eleq1 ( 𝑦 = 𝐸 → ( 𝑦𝐵𝐸𝐵 ) )
14 13 adantl ( ( 𝜑𝑦 = 𝐸 ) → ( 𝑦𝐵𝐸𝐵 ) )
15 14 5 anbi12d ( ( 𝜑𝑦 = 𝐸 ) → ( ( 𝑦𝐵𝜓 ) ↔ ( 𝐸𝐵𝜒 ) ) )
16 6 eqeq2d ( ( 𝜑𝑦 = 𝐸 ) → ( 𝐷 = 𝐶𝐷 = 𝐹 ) )
17 15 16 imbi12d ( ( 𝜑𝑦 = 𝐸 ) → ( ( ( 𝑦𝐵𝜓 ) → 𝐷 = 𝐶 ) ↔ ( ( 𝐸𝐵𝜒 ) → 𝐷 = 𝐹 ) ) )
18 17 adantlr ( ( ( 𝜑𝐴 ∈ V ) ∧ 𝑦 = 𝐸 ) → ( ( ( 𝑦𝐵𝜓 ) → 𝐷 = 𝐶 ) ↔ ( ( 𝐸𝐵𝜒 ) → 𝐷 = 𝐹 ) ) )
19 4 7 riotasvd ( ( 𝜑𝐴 ∈ V ) → ( ( 𝑦𝐵𝜓 ) → 𝐷 = 𝐶 ) )
20 nfv 𝑦 𝐴 ∈ V
21 1 20 nfan 𝑦 ( 𝜑𝐴 ∈ V )
22 nfcvd ( ( 𝜑𝐴 ∈ V ) → 𝑦 𝐸 )
23 nfvd ( 𝜑 → Ⅎ 𝑦 𝐸𝐵 )
24 23 3 nfand ( 𝜑 → Ⅎ 𝑦 ( 𝐸𝐵𝜒 ) )
25 nfra1 𝑦𝑦𝐵 ( 𝜓𝑥 = 𝐶 )
26 nfcv 𝑦 𝐴
27 25 26 nfriota 𝑦 ( 𝑥𝐴𝑦𝐵 ( 𝜓𝑥 = 𝐶 ) )
28 1 4 nfceqdf ( 𝜑 → ( 𝑦 𝐷 𝑦 ( 𝑥𝐴𝑦𝐵 ( 𝜓𝑥 = 𝐶 ) ) ) )
29 27 28 mpbiri ( 𝜑 𝑦 𝐷 )
30 29 2 nfeqd ( 𝜑 → Ⅎ 𝑦 𝐷 = 𝐹 )
31 24 30 nfimd ( 𝜑 → Ⅎ 𝑦 ( ( 𝐸𝐵𝜒 ) → 𝐷 = 𝐹 ) )
32 31 adantr ( ( 𝜑𝐴 ∈ V ) → Ⅎ 𝑦 ( ( 𝐸𝐵𝜒 ) → 𝐷 = 𝐹 ) )
33 11 18 19 21 22 32 vtocldf ( ( 𝜑𝐴 ∈ V ) → ( ( 𝐸𝐵𝜒 ) → 𝐷 = 𝐹 ) )
34 11 12 33 mp2and ( ( 𝜑𝐴 ∈ V ) → 𝐷 = 𝐹 )
35 10 34 sylan2 ( ( 𝜑𝐴𝑉 ) → 𝐷 = 𝐹 )