| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riotasv2d.1 |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
riotasv2d.2 |
⊢ ( 𝜑 → Ⅎ 𝑦 𝐹 ) |
| 3 |
|
riotasv2d.3 |
⊢ ( 𝜑 → Ⅎ 𝑦 𝜒 ) |
| 4 |
|
riotasv2d.4 |
⊢ ( 𝜑 → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) |
| 5 |
|
riotasv2d.5 |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 6 |
|
riotasv2d.6 |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → 𝐶 = 𝐹 ) |
| 7 |
|
riotasv2d.7 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) |
| 8 |
|
riotasv2d.8 |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
| 9 |
|
riotasv2d.9 |
⊢ ( 𝜑 → 𝜒 ) |
| 10 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 11 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → 𝐸 ∈ 𝐵 ) |
| 12 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → 𝜒 ) |
| 13 |
|
eleq1 |
⊢ ( 𝑦 = 𝐸 → ( 𝑦 ∈ 𝐵 ↔ 𝐸 ∈ 𝐵 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( 𝑦 ∈ 𝐵 ↔ 𝐸 ∈ 𝐵 ) ) |
| 15 |
14 5
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ↔ ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 16 |
6
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( 𝐷 = 𝐶 ↔ 𝐷 = 𝐹 ) ) |
| 17 |
15 16
|
imbi12d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ↔ ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) ) |
| 18 |
17
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ V ) ∧ 𝑦 = 𝐸 ) → ( ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ↔ ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) ) |
| 19 |
4 7
|
riotasvd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 ∈ V |
| 21 |
1 20
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝐴 ∈ V ) |
| 22 |
|
nfcvd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → Ⅎ 𝑦 𝐸 ) |
| 23 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑦 𝐸 ∈ 𝐵 ) |
| 24 |
23 3
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑦 ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) ) |
| 25 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 27 |
25 26
|
nfriota |
⊢ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) |
| 28 |
1 4
|
nfceqdf |
⊢ ( 𝜑 → ( Ⅎ 𝑦 𝐷 ↔ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) ) |
| 29 |
27 28
|
mpbiri |
⊢ ( 𝜑 → Ⅎ 𝑦 𝐷 ) |
| 30 |
29 2
|
nfeqd |
⊢ ( 𝜑 → Ⅎ 𝑦 𝐷 = 𝐹 ) |
| 31 |
24 30
|
nfimd |
⊢ ( 𝜑 → Ⅎ 𝑦 ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → Ⅎ 𝑦 ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) |
| 33 |
11 18 19 21 22 32
|
vtocldf |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) |
| 34 |
11 12 33
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → 𝐷 = 𝐹 ) |
| 35 |
10 34
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → 𝐷 = 𝐹 ) |