Step |
Hyp |
Ref |
Expression |
1 |
|
riotasv2s.2 |
⊢ 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
2 |
|
3simpc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) → ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) ) |
3 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) → 𝐴 ∈ 𝑉 ) |
4 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
6 |
4 5
|
nfriota |
⊢ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
7 |
1 6
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐷 |
8 |
7
|
nfel1 |
⊢ Ⅎ 𝑦 𝐷 ∈ 𝐴 |
9 |
|
nfv |
⊢ Ⅎ 𝑦 𝐸 ∈ 𝐵 |
10 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝐸 / 𝑦 ] 𝜑 |
11 |
9 10
|
nfan |
⊢ Ⅎ 𝑦 ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) |
12 |
8 11
|
nfan |
⊢ Ⅎ 𝑦 ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) |
13 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝐸 / 𝑦 ⦌ 𝐶 |
14 |
13
|
a1i |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) → Ⅎ 𝑦 ⦋ 𝐸 / 𝑦 ⦌ 𝐶 ) |
15 |
10
|
a1i |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) → Ⅎ 𝑦 [ 𝐸 / 𝑦 ] 𝜑 ) |
16 |
1
|
a1i |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
17 |
|
sbceq1a |
⊢ ( 𝑦 = 𝐸 → ( 𝜑 ↔ [ 𝐸 / 𝑦 ] 𝜑 ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) ∧ 𝑦 = 𝐸 ) → ( 𝜑 ↔ [ 𝐸 / 𝑦 ] 𝜑 ) ) |
19 |
|
csbeq1a |
⊢ ( 𝑦 = 𝐸 → 𝐶 = ⦋ 𝐸 / 𝑦 ⦌ 𝐶 ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) ∧ 𝑦 = 𝐸 ) → 𝐶 = ⦋ 𝐸 / 𝑦 ⦌ 𝐶 ) |
21 |
|
simpl |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) → 𝐷 ∈ 𝐴 ) |
22 |
|
simprl |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) → 𝐸 ∈ 𝐵 ) |
23 |
|
simprr |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) → [ 𝐸 / 𝑦 ] 𝜑 ) |
24 |
12 14 15 16 18 20 21 22 23
|
riotasv2d |
⊢ ( ( ( 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) ∧ 𝐴 ∈ 𝑉 ) → 𝐷 = ⦋ 𝐸 / 𝑦 ⦌ 𝐶 ) |
25 |
2 3 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝐴 ∧ ( 𝐸 ∈ 𝐵 ∧ [ 𝐸 / 𝑦 ] 𝜑 ) ) → 𝐷 = ⦋ 𝐸 / 𝑦 ⦌ 𝐶 ) |