| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riotasv3d.1 |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
riotasv3d.2 |
⊢ ( 𝜑 → Ⅎ 𝑦 𝜃 ) |
| 3 |
|
riotasv3d.3 |
⊢ ( 𝜑 → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) |
| 4 |
|
riotasv3d.4 |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → ( 𝜒 ↔ 𝜃 ) ) |
| 5 |
|
riotasv3d.5 |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝜒 ) ) |
| 6 |
|
riotasv3d.6 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) |
| 7 |
|
riotasv3d.7 |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜓 ) |
| 8 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ∃ 𝑦 ∈ 𝐵 𝜓 ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 ∈ V |
| 11 |
5
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) → 𝜒 ) |
| 12 |
11
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → 𝜒 ) |
| 13 |
3 6
|
riotasvd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ) |
| 14 |
13
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → 𝐷 = 𝐶 ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → 𝐶 = 𝐷 ) |
| 16 |
15 4
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → ( 𝜒 ↔ 𝜃 ) ) |
| 17 |
12 16
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) → 𝜃 ) |
| 18 |
17
|
exp45 |
⊢ ( 𝜑 → ( 𝐴 ∈ V → ( 𝑦 ∈ 𝐵 → ( 𝜓 → 𝜃 ) ) ) ) |
| 19 |
1 10 18
|
ralrimd |
⊢ ( 𝜑 → ( 𝐴 ∈ V → ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝜃 ) ) ) |
| 20 |
|
r19.23t |
⊢ ( Ⅎ 𝑦 𝜃 → ( ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝜃 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜃 ) ) ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝜃 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜃 ) ) ) |
| 22 |
19 21
|
sylibd |
⊢ ( 𝜑 → ( 𝐴 ∈ V → ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜃 ) ) ) |
| 23 |
22
|
imp |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( ∃ 𝑦 ∈ 𝐵 𝜓 → 𝜃 ) ) |
| 24 |
9 23
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → 𝜃 ) |
| 25 |
8 24
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → 𝜃 ) |