| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							riotasv3d.1 | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							riotasv3d.2 | 
							⊢ ( 𝜑  →  Ⅎ 𝑦 𝜃 )  | 
						
						
							| 3 | 
							
								
							 | 
							riotasv3d.3 | 
							⊢ ( 𝜑  →  𝐷  =  ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜓  →  𝑥  =  𝐶 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							riotasv3d.4 | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  ( 𝜒  ↔  𝜃 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							riotasv3d.5 | 
							⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ∧  𝜓 )  →  𝜒 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							riotasv3d.6 | 
							⊢ ( 𝜑  →  𝐷  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							riotasv3d.7 | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝐵 𝜓 )  | 
						
						
							| 8 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V )  | 
						
						
							| 9 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  V )  →  ∃ 𝑦  ∈  𝐵 𝜓 )  | 
						
						
							| 10 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝐴  ∈  V  | 
						
						
							| 11 | 
							
								5
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝜓 ) )  →  𝜒 )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantrl | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  ( 𝑦  ∈  𝐵  ∧  𝜓 ) ) )  →  𝜒 )  | 
						
						
							| 13 | 
							
								3 6
							 | 
							riotasvd | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  V )  →  ( ( 𝑦  ∈  𝐵  ∧  𝜓 )  →  𝐷  =  𝐶 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							impr | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  ( 𝑦  ∈  𝐵  ∧  𝜓 ) ) )  →  𝐷  =  𝐶 )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  ( 𝑦  ∈  𝐵  ∧  𝜓 ) ) )  →  𝐶  =  𝐷 )  | 
						
						
							| 16 | 
							
								15 4
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  ( 𝑦  ∈  𝐵  ∧  𝜓 ) ) )  →  ( 𝜒  ↔  𝜃 ) )  | 
						
						
							| 17 | 
							
								12 16
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  V  ∧  ( 𝑦  ∈  𝐵  ∧  𝜓 ) ) )  →  𝜃 )  | 
						
						
							| 18 | 
							
								17
							 | 
							exp45 | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  V  →  ( 𝑦  ∈  𝐵  →  ( 𝜓  →  𝜃 ) ) ) )  | 
						
						
							| 19 | 
							
								1 10 18
							 | 
							ralrimd | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  V  →  ∀ 𝑦  ∈  𝐵 ( 𝜓  →  𝜃 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							r19.23t | 
							⊢ ( Ⅎ 𝑦 𝜃  →  ( ∀ 𝑦  ∈  𝐵 ( 𝜓  →  𝜃 )  ↔  ( ∃ 𝑦  ∈  𝐵 𝜓  →  𝜃 ) ) )  | 
						
						
							| 21 | 
							
								2 20
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐵 ( 𝜓  →  𝜃 )  ↔  ( ∃ 𝑦  ∈  𝐵 𝜓  →  𝜃 ) ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							sylibd | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  V  →  ( ∃ 𝑦  ∈  𝐵 𝜓  →  𝜃 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  V )  →  ( ∃ 𝑦  ∈  𝐵 𝜓  →  𝜃 ) )  | 
						
						
							| 24 | 
							
								9 23
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  V )  →  𝜃 )  | 
						
						
							| 25 | 
							
								8 24
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑉 )  →  𝜃 )  |