Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016) (Revised by NM, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riotaund | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 2 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 3 | iotanul | ⊢ ( ¬ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ∅ ) | |
| 4 | 2 3 | sylnbi | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ∅ ) |
| 5 | 1 4 | eqtrid | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ∅ ) |