Metamath Proof Explorer


Theorem riotaund

Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016) (Revised by NM, 13-Sep-2018)

Ref Expression
Assertion riotaund ( ¬ ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-riota ( 𝑥𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) )
2 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
3 iotanul ( ¬ ∃! 𝑥 ( 𝑥𝐴𝜑 ) → ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = ∅ )
4 2 3 sylnbi ( ¬ ∃! 𝑥𝐴 𝜑 → ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = ∅ )
5 1 4 eqtrid ( ¬ ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) = ∅ )