Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016) (Revised by NM, 13-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | riotaund | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
2 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
3 | iotanul | ⊢ ( ¬ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ∅ ) | |
4 | 2 3 | sylnbi | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ∅ ) |
5 | 1 4 | eqtrid | ⊢ ( ¬ ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ∅ ) |