Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riotauni | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ∪ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 2 | iotauni | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) | |
| 3 | 1 2 | sylbi | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
| 4 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 5 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 6 | 5 | unieqi | ⊢ ∪ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
| 7 | 3 4 6 | 3eqtr4g | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ∪ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) |