Metamath Proof Explorer


Theorem riotauni

Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011)

Ref Expression
Assertion riotauni ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) = { 𝑥𝐴𝜑 } )

Proof

Step Hyp Ref Expression
1 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
2 iotauni ( ∃! 𝑥 ( 𝑥𝐴𝜑 ) → ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } )
3 1 2 sylbi ( ∃! 𝑥𝐴 𝜑 → ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } )
4 df-riota ( 𝑥𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) )
5 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
6 5 unieqi { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
7 3 4 6 3eqtr4g ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) = { 𝑥𝐴𝜑 } )