Step |
Hyp |
Ref |
Expression |
1 |
|
riotaxfrd.1 |
⊢ Ⅎ 𝑦 𝐶 |
2 |
|
riotaxfrd.2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) |
3 |
|
riotaxfrd.3 |
⊢ ( ( 𝜑 ∧ ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) |
4 |
|
riotaxfrd.4 |
⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
5 |
|
riotaxfrd.5 |
⊢ ( 𝑦 = ( ℩ 𝑦 ∈ 𝐴 𝜒 ) → 𝐵 = 𝐶 ) |
6 |
|
riotaxfrd.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
7 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
8 |
7
|
baib |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ 𝜓 ) ) |
9 |
8
|
riotabiia |
⊢ ( ℩ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = ( ℩ 𝑥 ∈ 𝐴 𝜓 ) |
10 |
2 6 4
|
reuxfr1ds |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑦 ∈ 𝐴 𝜒 ) ) |
11 |
|
riotacl2 |
⊢ ( ∃! 𝑦 ∈ 𝐴 𝜒 → ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ ∃! 𝑦 ∈ 𝐴 𝜒 ) → ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) |
13 |
|
riotacl |
⊢ ( ∃! 𝑦 ∈ 𝐴 𝜒 → ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ 𝐴 ) |
14 |
|
nfriota1 |
⊢ Ⅎ 𝑦 ( ℩ 𝑦 ∈ 𝐴 𝜒 ) |
15 |
14 1 2 4 5
|
rabxfrd |
⊢ ( ( 𝜑 ∧ ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ 𝐴 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) ) |
16 |
13 15
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∃! 𝑦 ∈ 𝐴 𝜒 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) ) |
17 |
12 16
|
mpbird |
⊢ ( ( 𝜑 ∧ ∃! 𝑦 ∈ 𝐴 𝜒 ) → 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
18 |
17
|
ex |
⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐴 𝜒 → 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
19 |
10 18
|
sylbid |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 → 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
20 |
19
|
imp |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
21 |
3
|
ex |
⊢ ( 𝜑 → ( ( ℩ 𝑦 ∈ 𝐴 𝜒 ) ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) |
22 |
13 21
|
syl5 |
⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐴 𝜒 → 𝐶 ∈ 𝐴 ) ) |
23 |
10 22
|
sylbid |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 → 𝐶 ∈ 𝐴 ) ) |
24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → 𝐶 ∈ 𝐴 ) |
25 |
7
|
baibr |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
26 |
25
|
reubiia |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
27 |
26
|
biimpi |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 → ∃! 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ∃! 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
29 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
30 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝜓 } |
31 |
30
|
nfel2 |
⊢ Ⅎ 𝑥 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } |
32 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
33 |
29 31 32
|
riota2f |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( ℩ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = 𝐶 ) ) |
34 |
24 28 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( ℩ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = 𝐶 ) ) |
35 |
20 34
|
mpbid |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( ℩ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = 𝐶 ) |
36 |
9 35
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐶 ) |