| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-risc |
⊢ ≃𝑟 = { 〈 𝑟 , 𝑠 〉 ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) } |
| 2 |
1
|
relopabiv |
⊢ Rel ≃𝑟 |
| 3 |
|
eqid |
⊢ dom ≃𝑟 = dom ≃𝑟 |
| 4 |
|
vex |
⊢ 𝑟 ∈ V |
| 5 |
|
vex |
⊢ 𝑠 ∈ V |
| 6 |
4 5
|
isrisc |
⊢ ( 𝑟 ≃𝑟 𝑠 ↔ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) ) |
| 7 |
|
rngoisocnv |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) → ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) ) |
| 8 |
7
|
3expia |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) → ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) → ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) ) ) |
| 9 |
|
risci |
⊢ ( ( 𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ∧ ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) ) → 𝑠 ≃𝑟 𝑟 ) |
| 10 |
9
|
3expia |
⊢ ( ( 𝑠 ∈ RingOps ∧ 𝑟 ∈ RingOps ) → ( ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) → 𝑠 ≃𝑟 𝑟 ) ) |
| 11 |
10
|
ancoms |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) → ( ◡ 𝑓 ∈ ( 𝑠 RingOpsIso 𝑟 ) → 𝑠 ≃𝑟 𝑟 ) ) |
| 12 |
8 11
|
syld |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) → ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) → 𝑠 ≃𝑟 𝑟 ) ) |
| 13 |
12
|
exlimdv |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) → ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) → 𝑠 ≃𝑟 𝑟 ) ) |
| 14 |
13
|
imp |
⊢ ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) → 𝑠 ≃𝑟 𝑟 ) |
| 15 |
6 14
|
sylbi |
⊢ ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) |
| 16 |
|
vex |
⊢ 𝑡 ∈ V |
| 17 |
5 16
|
isrisc |
⊢ ( 𝑠 ≃𝑟 𝑡 ↔ ( ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) |
| 18 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) |
| 19 |
|
rngoisoco |
⊢ ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ∧ ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) ) |
| 20 |
19
|
ex |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) ) ) |
| 21 |
|
risci |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ∧ ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) |
| 22 |
21
|
3expia |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 23 |
22
|
3adant2 |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑟 RingOpsIso 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 24 |
20 23
|
syld |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 25 |
24
|
exlimdvv |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 26 |
18 25
|
biimtrrid |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 27 |
26
|
3expb |
⊢ ( ( 𝑟 ∈ RingOps ∧ ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 28 |
27
|
adantlr |
⊢ ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 29 |
28
|
imp |
⊢ ( ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ) ∧ ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) → 𝑟 ≃𝑟 𝑡 ) |
| 30 |
29
|
an4s |
⊢ ( ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) ∧ ( ( 𝑠 ∈ RingOps ∧ 𝑡 ∈ RingOps ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑠 RingOpsIso 𝑡 ) ) ) → 𝑟 ≃𝑟 𝑡 ) |
| 31 |
6 17 30
|
syl2anb |
⊢ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) |
| 32 |
15 31
|
pm3.2i |
⊢ ( ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) ∧ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 33 |
32
|
ax-gen |
⊢ ∀ 𝑡 ( ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) ∧ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 34 |
33
|
gen2 |
⊢ ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) ∧ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) |
| 35 |
|
dfer2 |
⊢ ( ≃𝑟 Er dom ≃𝑟 ↔ ( Rel ≃𝑟 ∧ dom ≃𝑟 = dom ≃𝑟 ∧ ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 ≃𝑟 𝑠 → 𝑠 ≃𝑟 𝑟 ) ∧ ( ( 𝑟 ≃𝑟 𝑠 ∧ 𝑠 ≃𝑟 𝑡 ) → 𝑟 ≃𝑟 𝑡 ) ) ) ) |
| 36 |
2 3 34 35
|
mpbir3an |
⊢ ≃𝑟 Er dom ≃𝑟 |