Metamath Proof Explorer


Theorem risefac0

Description: The value of the rising factorial when N = 0 . (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion risefac0 ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac 0 ) = 1 )

Proof

Step Hyp Ref Expression
1 0nn0 0 ∈ ℕ0
2 risefacval ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐴 RiseFac 0 ) = ∏ 𝑘 ∈ ( 0 ... ( 0 − 1 ) ) ( 𝐴 + 𝑘 ) )
3 1 2 mpan2 ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac 0 ) = ∏ 𝑘 ∈ ( 0 ... ( 0 − 1 ) ) ( 𝐴 + 𝑘 ) )
4 risefall0lem ( 0 ... ( 0 − 1 ) ) = ∅
5 4 prodeq1i 𝑘 ∈ ( 0 ... ( 0 − 1 ) ) ( 𝐴 + 𝑘 ) = ∏ 𝑘 ∈ ∅ ( 𝐴 + 𝑘 )
6 prod0 𝑘 ∈ ∅ ( 𝐴 + 𝑘 ) = 1
7 5 6 eqtri 𝑘 ∈ ( 0 ... ( 0 − 1 ) ) ( 𝐴 + 𝑘 ) = 1
8 3 7 eqtrdi ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac 0 ) = 1 )