Step |
Hyp |
Ref |
Expression |
1 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
2 |
1
|
oveq2i |
⊢ ( 𝐴 RiseFac ( 0 + 1 ) ) = ( 𝐴 RiseFac 1 ) |
3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
4 |
|
risefacp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐴 RiseFac ( 0 + 1 ) ) = ( ( 𝐴 RiseFac 0 ) · ( 𝐴 + 0 ) ) ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac ( 0 + 1 ) ) = ( ( 𝐴 RiseFac 0 ) · ( 𝐴 + 0 ) ) ) |
6 |
|
risefac0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac 0 ) = 1 ) |
7 |
|
addid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) |
8 |
6 7
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 RiseFac 0 ) · ( 𝐴 + 0 ) ) = ( 1 · 𝐴 ) ) |
9 |
|
mulid2 |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
10 |
5 8 9
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac ( 0 + 1 ) ) = 𝐴 ) |
11 |
2 10
|
eqtr3id |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 RiseFac 1 ) = 𝐴 ) |