| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℂ ) |
| 2 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
| 3 |
2
|
nncnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℂ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 5 |
1 4
|
pncan3d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 1 + ( 𝑘 − 1 ) ) = 𝑘 ) |
| 6 |
5
|
prodeq2dv |
⊢ ( 𝑁 ∈ ℕ0 → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 1 + ( 𝑘 − 1 ) ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
|
risefacval2 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 1 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 1 + ( 𝑘 − 1 ) ) ) |
| 9 |
7 8
|
mpan |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 1 + ( 𝑘 − 1 ) ) ) |
| 10 |
|
fprodfac |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) |
| 11 |
6 9 10
|
3eqtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 RiseFac 𝑁 ) = ( ! ‘ 𝑁 ) ) |