| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 3 |  | 1cnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 4 | 2 3 | pncand | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  =  ( 0 ... 𝑁 ) ) | 
						
							| 6 | 5 | prodeq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ∏ 𝑘  ∈  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 𝐴  +  𝑘 )  =  ∏ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝐴  +  𝑘 ) ) | 
						
							| 7 |  | elnn0uz | ⊢ ( 𝑁  ∈  ℕ0  ↔  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 8 | 7 | biimpi | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 10 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 11 | 10 | nn0cnd | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℂ ) | 
						
							| 12 |  | addcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 𝐴  +  𝑘 )  ∈  ℂ ) | 
						
							| 13 | 11 12 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐴  +  𝑘 )  ∈  ℂ ) | 
						
							| 14 | 13 | adantlr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐴  +  𝑘 )  ∈  ℂ ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑘  =  𝑁  →  ( 𝐴  +  𝑘 )  =  ( 𝐴  +  𝑁 ) ) | 
						
							| 16 | 9 14 15 | fprodm1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ∏ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝐴  +  𝑘 )  =  ( ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴  +  𝑘 )  ·  ( 𝐴  +  𝑁 ) ) ) | 
						
							| 17 | 6 16 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ∏ 𝑘  ∈  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 𝐴  +  𝑘 )  =  ( ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴  +  𝑘 )  ·  ( 𝐴  +  𝑁 ) ) ) | 
						
							| 18 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 19 |  | risefacval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝑁  +  1 )  ∈  ℕ0 )  →  ( 𝐴  RiseFac  ( 𝑁  +  1 ) )  =  ∏ 𝑘  ∈  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 𝐴  +  𝑘 ) ) | 
						
							| 20 | 18 19 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  RiseFac  ( 𝑁  +  1 ) )  =  ∏ 𝑘  ∈  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 𝐴  +  𝑘 ) ) | 
						
							| 21 |  | risefacval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  RiseFac  𝑁 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴  +  𝑘 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  RiseFac  𝑁 )  ·  ( 𝐴  +  𝑁 ) )  =  ( ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴  +  𝑘 )  ·  ( 𝐴  +  𝑁 ) ) ) | 
						
							| 23 | 17 20 22 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  RiseFac  ( 𝑁  +  1 ) )  =  ( ( 𝐴  RiseFac  𝑁 )  ·  ( 𝐴  +  𝑁 ) ) ) |